Page 1 of 1
O ecuatie
Posted: Sat Mar 15, 2008 6:27 pm
by Natalee
\( \frac{1}{6} \ \cdot \ \{\frac{1}{6} \ \cdot \ [\frac{1}{6} \ \cdot \ (\frac{1}{6} \ \cdot \ x \ - \ \frac{1}{6}) \ - \ 3] \ + \ 6\} \ \cdot3^4 \ - \ \frac{1}{4} \ = \ 75 \)
\( x = ? \)
Posted: Wed Mar 19, 2008 1:36 pm
by handleman
x=3611
Posted: Wed Mar 19, 2008 7:54 pm
by Natalee
O metoda:
.................................................................................................................................Ciorna:
\( \frac{1}{6}\cdot\{\frac{1}{6}\cdot[\frac{1}{6}\cdot(\frac{1}{6}\cdot x -\frac{1}{6})-3]+6\}\cdot3^4-\frac{1}{4}=75........................................................ 75 + \frac{1}{4} = \frac{301}{4}
\)
\( \frac{1}{6}\cdot\{\frac{1}{6}\cdot[\frac{1}{6}\cdot(\frac{1}{6}\cdot x - \frac{1}{6})-3]+6\}\cdot 81 = \frac{301}{4}.................................................................\frac{301}{4}:81=\frac{301}{324} \)
\( \frac{1}{6}\cdot\{\frac{1}{6}\cdot[\frac{1}{6}\cdot(\frac{1}{6}\cdot x - \frac{1}{6})-3]+6\} = \frac{301}{324}............................. .......................................\frac{301}{324}:\frac{1}{6}=\frac{301}{54} \)
\( \frac{1}{6}\cdot[\frac{1}{6}\cdot(\frac{1}{6}\cdot x - \frac{1}{6})-3]+6=\frac{301}{54}.............................................................................\frac{301}{54} - 6 = - \frac{23}{54} \)
\( \frac{1}{6}\cdot[\frac{1}{6}\cdot(\frac{1}{6}\cdot x - \frac{1}{6})-3]=-\frac{23}{54}...........................................................................-\frac{23}{54}:\frac{1}{6} = -\frac{23}{9} \)
\( \frac{1}{6}\cdot(\frac{1}{6}\cdot x - \frac{1}{6})-3 = -\frac{23}{9}...................................................................................... -\frac{23}{9}+3 = \frac{4}{9} \)
\( \frac{1}{6}\cdot(\frac{1}{6}\cdot x - \frac{1}{6})=\frac{4}{9}..................................................................................................\frac{4}{9} : \frac{1}{6}=\frac{8}{3} \)
\( \frac{1}{6}\cdot x - \frac{1}{6} = \frac{8}{3}........................................................................................................\frac{8}{3}+\frac{1}{6} = \frac{17}{6} \)
\( \frac{1}{6}\cdot x =\frac{17}{6} \)
\( x = 17 \)
A doua metoda:
...?...
Natalee
Posted: Thu Mar 20, 2008 5:28 pm
by handleman
il invit pe don profesor sa intervina
Posted: Thu Mar 20, 2008 5:37 pm
by handleman
nu ai voie sa desfaci paranteza cand ai inmultire acolo la acolada
Posted: Thu Mar 20, 2008 5:48 pm
by Natalee
Unde nu am voie? Este rezolvare de la dreapta la stanga, metoda care se numeste *metoda mersului invers*, se utilizeaza la rezolvarea unor exercitii de tipul propus.
Priveste cu atentie la ciorna. Am trecut peste egal, cu operatia inversa, fiecare numar care apare in exercitiu, am calculat, dupa care am facut etapa de copiere. Dupa cum observi, am eliminat parantezele doar atunci cand am * luat * de langa ele, de la dreapta (sau de la stanga) factorul inmultirii.
O sa scriu si alta metoda de rezolvare( in alt mesaj).
Natalee
Re: O ecuatie
Posted: Thu Mar 20, 2008 7:11 pm
by Natalee
\( \frac{1}{6} \ \cdot \ \{\frac{1}{6} \ \cdot \ [\frac{1}{6} \ \cdot \ (\frac{1}{6} \ \cdot \ x \ - \ \frac{1}{6}) \ - \ 3] \ + \ 6\} \ \cdot3^4 \ - \ \frac{1}{4} \ = \ 75 \)
S-o luam altfel, prin eliminarea parantezelor:
1) Elimin parantezele rotunde, pe cele drepte le transform in paranteze rotunde, acoladele in paranteze drepte:
\( \frac{1}{6}\cdot[\frac{1}{6}\cdot(\frac{1}{6^2}\cdot x - \frac{1}{6^2}- 3) + 6]\cdot3^4 - \frac{1}{4} = 75 \)
2)
\( \frac{1}{6} \) este factor comun la paranteza rotunda, elimin parantezele rotunde, pe cele drepte le transform in paranteze rotunde:
\( \frac{1}{6}\cdot(\frac{1}{6^3}\cdot x - \frac{1}{6^3} - \frac{3}{6}+6)\cdot3^4-\frac{1}{4}= 75 \)
3) La parantezele rotunde am factor comun la stanga si la dreapta lor. Intai inmultesc
\( \frac{1}{6} \) cu fiecare termen din paranteza:
\( (\frac{1}{6^4}\cdot x - \frac{1}{6^4} - \frac{3}{6^2} + 1)\cdot3^4 - \frac{1}{4} = 75 \)
4) Elimin parantezele rotunde, inmultind fiecare termen cu
\( 3^4 \)
\( \frac{3^4\cdot x}{2^4\cdot3^4} - \frac{3^4}{2^4\cdot3^4} - \frac{3\cdot3^4}{2^2\cdot3^2} + 3^4 - \frac{1}{4}= 75
\)
5. In urma simplificarilor se obtine:
\( \frac{x}{2^4}-\frac{1}{2^4} - \frac{3^3}{2^2}+ 3^4 - \frac{1}{4}=75 \)
\( \frac{x}{16}-\frac{1}{16}-\frac{27}{4}+81-\frac{1}{4}=75 \)
6. Numitorul comun este
\( 16 \). Aduc la acelasi numitor la stanga si la dreapta egalului. Obtin ecuatia:
\( x - 1 - 108 + 1296 - 4 = 1200 \)
\( x + 1296 - 113 = 1200 \)
\( x + 1183 = 1200 \)
\( x = 1200 - 1183 \)
\( x = 17. \)
Vezi! Am obtinut:
\( 17 \).
Natalee
Posted: Fri Mar 21, 2008 5:35 pm
by handleman
auzi mai acolo la acolada uite \( \frac{1}{6} \)x{....}x81-\( \frac{1}{4} \)=75
ei bine, 1\6x81=81\6 abia dupa ce scazi 1\4din75 poti sa imparti rezultatul obtinut la81\6,iar dupa aceea sa desfaci acolada. Teai prins??????
Posted: Fri Mar 21, 2008 6:09 pm
by Natalee
M-am prins!
Ai dreptate pe undeva, dar eu nu am vrut sa fac asa, am vrut sa rezolv, asa cum am rezolvat
Natalee