Page 1 of 1

O problema de medie pentru o functie de doua ori derivabila

Posted: Mon Mar 10, 2008 7:24 pm
by bogdanl_yex
Se considera functia \( f:[a,b]\to\mathbb{R} \) de doua ori derivabila pe \( [a,b] \). Daca \( f(a)=f(b) \) si \( f^{\prime}(a)=f^{\prime}(b) \), sa se demonstreze ca pentru orice numar real \( c \) ecuatia \( f^{\prime}^{\prime}(x)-c (f^{\prime}(x))^{2}=0 \) are cel putin o solutie in intervalul \( (a,b) \).

Posted: Fri Mar 14, 2008 11:06 pm
by bogdanl_yex
Se considera functia \( g(x)=f^{\prime}(x)e^{-\lambda f(x)} \) care are propr. ca \( g(a)=g(b) \), deci conform T. Rolle exista \( c \in (a,b) \) astfel incat \( g^{\prime}(c)=0 \), de unde rezulta concluzia...