Doua probleme cu numere complexe
Posted: Fri Feb 29, 2008 1:16 pm
1. Sa se arate ca pentru oricare doua numere complexe \( \alpha\ne 0 \) , \( \beta\ne 0 \) exista echivalenta :
\( |\alpha +i\cdot \beta |=|\alpha -i\cdot\beta | \) \( \Longleftrightarrow \) \( (\exists )\ r\in \mathbb R \) , \( r\ne 0 \) astfel incat \( \beta =r\cdot\alpha \) , adica \( \alpha\cdot\overline {\beta}\in\mathbb R \) .
2. Fie numerele complexe \( \omega\ne 1 \) si \( \alpha \) , \( \beta \) , \( \gamma \) pentru care \( \left\{\begin{array}{c}
\alpha +\beta +\gamma =\omega +2\\\\
\alpha\cdot\beta\cdot\gamma =\omega -2\end{array} \) .
Sa se arate ca exista \( z\in\left\{\alpha , \beta , \gamma \right\} \) astfel incat \( |z|>1 \) .
\( |\alpha +i\cdot \beta |=|\alpha -i\cdot\beta | \) \( \Longleftrightarrow \) \( (\exists )\ r\in \mathbb R \) , \( r\ne 0 \) astfel incat \( \beta =r\cdot\alpha \) , adica \( \alpha\cdot\overline {\beta}\in\mathbb R \) .
2. Fie numerele complexe \( \omega\ne 1 \) si \( \alpha \) , \( \beta \) , \( \gamma \) pentru care \( \left\{\begin{array}{c}
\alpha +\beta +\gamma =\omega +2\\\\
\alpha\cdot\beta\cdot\gamma =\omega -2\end{array} \) .
Sa se arate ca exista \( z\in\left\{\alpha , \beta , \gamma \right\} \) astfel incat \( |z|>1 \) .