Page 1 of 1
f(x)<=f(x+1/n) pentru orice x real si n natural
Posted: Tue Feb 26, 2008 1:56 am
by Cezar Lupu
Fie \( f:\mathbb{R}\to\mathbb{R} \) o functie continua astfel incat
\( f(x)\leq f\left(x+\frac{1}{n}\right),\forall x\in\mathbb{R}, n\in\mathbb{N} \).
Aratati ca \( f \) este crescatoare.
Posted: Tue Feb 26, 2008 11:45 am
by Bogdan Posa
Fie \( x \geq x_{0} \) \( , a_{n} =\frac {1}{n} \)
\( x = x_{0}+ \frac {x-x_{0}}{a_{n}} a_{n} \)
\( x = x_{0} + \){\( \frac {x-x_{0}}{a_{n}} \)}\( a_{n} \) + \( [\frac {x-x_{0}}{a_{n}}] a_{n} \)
\( f(x)=f(x_{0} + \){\( \frac {x-x_{0}}{a_{n}} \)}\( a_{n} \) + \( [\frac {x-x_{0}}{a_{n}}] a_{n} ) \geq f(x_{0} + \){\( \frac {x-x_{0}}{a_{n}} \)}\( a_{n} ) \)
Trecand la limita in ultima inegalitate obtinem ca \( f(x) \geq f(x_{0}) \)
Posted: Tue Feb 26, 2008 3:34 pm
by Cezar Lupu
Solutie.(la nivel de clasa 12-a

)
Constrium sirul de functii derivabile
\( f_{n}:\mathbb{R}\to\mathbb{R} \) definit prin
\( f_{n}(x)=n\int_{x}^{x+\frac{1}{n}}f(t)dt=n\left(\int_0^{x+\frac{1}{n}}f(t)dt-\int_0^xf(t)dt\right), \forall x\in\mathbb{R}, \forall n\in\mathbb{N}^{*} \). Derivand, vom avea
\( f\prime_{n}(x)=n(f\left(x+\frac{1}{n}\right)-f(x))\geq 0, \forall x\in\mathbb{R}, n\in\mathbb{N}^{*} \).
Astfel, functia
\( f_{n} \) este crescatoare. Pe de alta parte, avem ca
\( \lim_{n\to\infty}f_{n}(x)=f(x) \), iar cum functia
\( f_{n} \) este crescatoare rezulta ca si
\( f \) este crescatoare.
\( \qed \)
Posted: Tue Feb 26, 2008 5:50 pm
by Bogdan Posa
O generalizare:
Fie \( f:\mathbb{R}\to\mathbb{R} \) o functie continua astfel incat
\( f(x)\leq f\left(x+a_{n}\right),\forall x\in\mathbb{R}, n\in\mathbb{N} \), iar \( a_{n} \geq 0 \) avand limita 0.
Atunci \( f \) este crescatoare.