Page 1 of 1

Inegalitate

Posted: Sat Feb 23, 2008 11:24 pm
by heman
Pentru x,y,z \( \in \) \( [\frac{1} {3},\frac{2} {3}] \) are loc inegalitatea:
1 \( \ge \) \( \sqrt[3] {xyz} \)+\( \frac {2} {3(x+y+z)} \)

Posted: Sun Feb 24, 2008 12:33 am
by Radu Titiu
Suficient sa aratam ca
\( 1-\frac{S}{3}-\frac{2}{3S}\geq 0 \), unde S=x+y+z.
Echivalent:
\( S^2-3S+2\leq 0 \Leftrightarrow \) \( S\in [1,2] \), care se obtine folosind ipoteza.