Page 1 of 1
Radicalul unui subgrup
Posted: Thu Feb 21, 2008 7:55 pm
by bogdanl_yex
Fie \( G \) un grup abelian, \( H \) un subgrup al sau si multimea \( G_{H}=\{ x \in G | \exists n \in \mathbb{N}^{*}, \ x^{n} \in H \} \). Aratati ca:
a) \( G_{H} \) este subgrup al lui \( G \) si \( H \subset G_{H} \);
b) daca \( H_{1} \) si \( H_{2} \) sunt doua subgrupuri finite ale lui \( G \), atunci \( G_{H_{1}}=G_{H_{2}} \);
c) daca \( H \) este subgrup finit al lui \( (\mathbb{C}^{*},\cdot) \) sa se determine \( G_{H} \).
Posted: Sat Mar 15, 2008 6:09 pm
by bogdanl_yex
a) Fie \( x,y \in G_{H} \Rightarrow \exists m,n \in N^{*} \) astfel incat \( x^{m} \in H \) si \( x^{n} \in H \). Asadar avem ca \( (xy)^{mn}=x^{mn}y^{mn}=(x^{m})^{n}(x^{n})^{m} \). Dar H este subgrup \( (x^{m})^{n}(x^{n})^{m} \in H \Rightarrow (xy)^{mn} \in H \Rightarrow xy \in G_{H} \). Fie \( x \in G_{H} \Rightarrow \exists n \in N^{*} \) astfel incat \( x^{n} \in H \Rightarrow (x^{n})^{-1} \in H \Rightarrow (x^{-1})^{n} \in H \Rightarrow x^{-1} \in G_{H} \). Deci am demonstrat ca \( G_{H} \) este subgrup al lui G. Din felul cum este definit \( G_{H} \) rezulta ca \( H \subset G_{H} \).
Posted: Sat Mar 15, 2008 6:24 pm
by bogdanl_yex
b) Fie \( H_{1} \) si \( H_{2} \) doua subgrupuri finite ale lui \( G \). Mai intai aratam ca \( G_{H_{1}} \subset G_{H_{2}} \). Fie \( x \in G_{H_{1}} \Rightarrow \exists n \in N^{*} \) astfel incat \( x^{n} \in H_{1} \Rightarrow (x^{n})^{ordH_{1}}=e \Rightarrow x^{n \cdot ordH_{1} }=e \), dar cum \( e \in H_{2} \Rightarrow x \in H_{2} \Rightarrow G_{H_{1}} \subset G_{H_{2}} \). Analog \( G_{H_{2} \subset G_{H_{1}}} \Rightarrow G_{H_{1}}=G_{H_{2}} \).
Posted: Sat Mar 15, 2008 6:35 pm
by bogdanl_yex
Daca \( H \) este subgrup finit al lui \( C^{*} \Rightarrow H=U_{n}=\{ z \in C | z^{n}=1 \} \). Asadar \( G_{H}= \{ z \in C | z=cos 2 \pi r +isin 2 \pi r,\ r \in Q \} \).