Page 1 of 1
Doi determinanti. Unul usor, celalalt mai frumos!
Posted: Tue Feb 19, 2008 5:51 pm
by Virgil Nicula
1. Sa se arate ca \( \lef|\begin{array}{ccc}
x & y & z\\\
x^2 & y^2 & z^2\\\
yz & zx & xy\end{array}\right|=\left|\begin{array}{ccc}
1 & 1 & 1\\\
x^2 & y^2 & z^2\\\
x^3 & y^3 & z^3\end{array}\right| \).
2. Sa se arate ca \( \left|\begin{array}{ccc}
x+a & x+b & x+c\\\
x^2+a^2 & x^2+b^2 & x^2+c^2\\\
x^3+a^3 & x^3+b^3 & x^3+c^3\end{array}\right|=f(x)\cdot\left|\begin{array}{ccc}
1 & 1 & 1\\\
a & b & c\\\
a^2 & b^2 & c^2\end{array}\right| \),
unde \( f(x)=(x-a)(x-b)(x-c)+2abc \).
Posted: Thu Mar 13, 2008 1:43 pm
by Bogdan Cebere
1. Rezulta rapid din calcule.
2. Consideram functia \( h:R \to R \) cu \( h(x)=\left|\begin{array}{ccc} x+a & x+b & x+c\\\ x^2+a^2 & x^2+b^2 & x^2+c^2\\\ x^3+a^3 & x^3+b^3 & x^3+c^3\end{array}\right|-f(x)\cdot\left|\begin{array}{ccc} 1 & 1 & 1\\\ a & b & c\\\ a^2 & b^2 & c^2\end{array}\right| \).
h este o functie polinomiala de grad maxim 3.
Se observa ca in punctele a, b, c si 0 functia se anuleaza. Deci h=0.
Posted: Thu Mar 13, 2008 3:24 pm
by Virgil Nicula
1. Sincer, solutia ta este buna, dar nu-mi place.
Faci bataturi la "creier"si pierzi si timpul. Poti fara calcule ?!
2. De ce este de grad maxim trei ?
Si fiind de grad maxim trei, care-i coeficientul dominant ?
Nu de alta, dar le-ai cam "expediat" si poate altii vor si detalii.
Parca ai spune "sunt banale" cu aceasta "demonstratie" care nu spune nimic.
Pe noi nu ne intereseaza ca stii sa le rezolvi sau impresia ta ca "sunt banale" sau "evidente", sau "simple".
Aici invatam, invatam ... Daca vrei, cea mai scurta demonstratie a unei probleme arata asa: Demonstratie. Evident.
Si apoi sa mai afli ceva: nu exista treaba usoara sau treaba grea, ci treaba bine facuta sau prost facuta.
P.S. Imi cer scuze pentru cele spuse mai sus, poate te-am suparat un pic.
Solicit putina intelegere din partea ta pentru aceasta "deformatie profesionala".
Sunt profesor "batran" si mi-au trecut prin mana nepotii, parintii si uneori chiar si bunicii ...
Re: Doi determinanti. Unul usor, celalalt mai frumos!
Posted: Thu Mar 13, 2008 3:49 pm
by Virgil Nicula
Virgil Nicula wrote:\( \lef|\begin{array}{ccc}
x & y & z\\\
x^2 & y^2 & z^2\\\
yz & zx & xy\end{array}\right|=\left|\begin{array}{ccc}
1 & 1 & 1\\\
x^2 & y^2 & z^2\\\
x^3 & y^3 & z^3\end{array}\right| \)
Demonstratie. Notam \( D=\lef|\begin{array}{ccc}
x & y & z\\\
x^2 & y^2 & z^2\\\
yz & zx & xy\end{array}\right| \) . Inmultim coloanele \( 1 \) , \( 2 \) , \( 3 \) cu \( x \) , \( y \) , \( z \) respectiv
(implicit vom imparti determinantul obtinut prin \( xyz \) ) : \( D=\frac {1}{xyz}\cdot \left|\begin{array}{ccc}
x^2 & y^2 & z^2\\\
x^3 & y^3 & z^3\\\
xyz & xyz & xyz\end{array}\right| \) .
Din linia a treia iese factorul \( xyz \) . Deci \( D= \left|\begin{array}{ccc}
x^2 & y^2 & z^2\\\
x^3 & y^3 & z^3\\\
1 & 1 & 1\end{array}\right| \) .
Efectuam o permutare para intre linii \( (\ 1\rightarrow 2\ ;\ 2\rightarrow 3\ ;\ 3\rightarrow 1\ ) \) si obtinem identitatea propusa.
Posted: Thu Mar 13, 2008 4:20 pm
by Bogdan Cebere
2.\( h(x)=\left|\begin{array}{ccc} x+a & x+b & x+c\\\ x^2+a^2 & x^2+b^2 & x^2+c^2\\\ x^3+a^3 & x^3+b^3 & x^3+c^3\end{array}\right|-f(x)\cdot\left|\begin{array}{ccc} 1 & 1 & 1\\\ a & b & c\\\ a^2 & b^2 & c^2\end{array}\right|= \)
\( \left|\begin{array}{ccc} a-c & b-c & x+c\\\ a^2-c^2 & b^2-c^2 & x^2+c^2\\\ a^3-c^3 & b^3-c^3 & x^3+c^3\end{array}\right|-f(x)\cdot\left|\begin{array}{ccc} 1 & 1 & 1\\\ a & b & c\\\ a^2 & b^2 & c^2\end{array}\right| \)
Primul determinant este un polinom de grad 3.
f este tot un polinom de grad 3.
Pentru x=a
\( h(a)=\left|\begin{array}{ccc} 2a & a+b & a+c\\\ 2a^2 & a^2+b^2 & a^2+c^2\\\ 2a^3 & a^3+b^3 & a^3+c^3\end{array}\right|-2abc\cdot\left|\begin{array}{ccc} 1 & 1 & 1\\\ a & b & c\\\ a^2 & b^2 & c^2\end{array}\right| \)=
\( h(a)=2a\left|\begin{array}{ccc} 1 & a & a\\\ a & a^2 & a^2\\\ a^2 & a^3 & a^3\end{array}\right|+2abc\left|\begin{array}{ccc} 1 & 1 & 1\\\ a & b & c\\\ a^2 & b^2 & c^2\end{array}\right|-2abc\cdot\left|\begin{array}{ccc} 1 & 1 & 1\\\ a & b & c\\\ a^2 & b^2 & c^2\end{array}\right| \), deci h(a)=0.
Prin calcule obtinem h(b)=h(c)=h(0)=0, deci h=0.
Am afirmat doar ca h este un polinom de grad maxim 3 si nu am cautat coeficientul dominant pentru nu aveam cum. Am folosit aici notiunea de polinom doar pentru a putea arata ca functia se anuleaza intr-un numar de puncte mai mare decat gradul acesteia.
Posted: Thu Mar 13, 2008 4:33 pm
by Virgil Nicula
O.K. Desi este simplu raspunsul, inca odata te intreb, de ce primul polinom este de gradul trei ?!
Doua, trei cuvinte acolo puteai edita si tu ... Iar calculele tot nu le-ai evitat in intregime.
Se pare ca te-ai suparat. Imi pare rau ! Deci iata, se pot da si detalii ...
Virgil Nicula wrote: \( D\equiv\left|\begin{array}{ccc}
x+a & x+b & x+c\\\
x^2+a^2 & x^2+b^2 & x^2+c^2\\\
x^3+a^3 & x^3+b^3 & x^3+c^3\end{array}\right|=f(x)\cdot\left|\begin{array}{ccc}
1 & 1 & 1\\\
a & b & c\\\
a^2 & b^2 & c^2\end{array}\right| \) , unde \( f(x)=(x-a)(x-b)(x-c)+2abc \).
Demonstratie. Notam determinantul Vandermonde \( V(a,b,c)=\left|\begin{array}{ccc}
1 & 1 & 1\\\\
a & b & c\\\\
a^2 & b^2 & c^2\end{array}\right|=(c-a)(c-b)(b-a) \) .
Definim matricele "coloana" \( X=\left(\begin{array}{c}
1\\\\
x\\\\
x^2\end{array}\right) \) , \( A=\left(\begin{array}{c}
1\\\\
a\\\\
a^2\end{array}\right) \) , \( B=\left(\begin{array}{c}
1\\\\
b\\\\
b^2\end{array}\right) \) , \( C=\left(\begin{array}{c}
1\\\\
c\\\
c^2\end{array}\right) \) .
Se observa ca \( D=\left|xX+aA\ xX+bB\ xX+cC\right|= \)
\( |xX\ bB\ cC|+|aA\ xX\ cC|+|aA\ bB\ xX|+|aA\ bB\ cC|= \)
\( xbc\cdot V(x,b,c)+axc\cdot V(a,x,c)+abx\cdot V(a,b,x)+abc\cdot V(a,b,c)= \)
\( bcx\cdot V(b,c,x)+cax\cdot V(c,a,x)+abx\cdot V(a,b,x)+abc\cdot V(a,b,c)= \)
\( x\cdot\sum cb(c-b)(x-b)(x-c)+abcV(a,b,c)= \) \( h(x)+abcV(a,b,c) \) ,
unde \( h(x)=x\cdot\sum cb(c-b)(x-b)(x-c) \) . Se observa ca \( h(0)=0 \)
si \( h(a)=h(b)=h(c)=abcV(a,b,c) \) . In concluzie,
\( h(x)=\left[(x-a)(x-b)(x-c)+abc\right]\cdot V(a,b,c) \) si \( D=f(x)\cdot V(a,b,c) \) . Gata !
P.S. Astept observatiile (critice !) si sugestiile tale relativ la calculul celor doi determinanti.
Si am constatat ca nu ai avut rabdare sa editez intreg mesajul. Doar te rugasem ...
Posted: Thu Mar 13, 2008 5:38 pm
by Bogdan Cebere
\( h(x)= \left|\begin{array}{ccc} a-c & b-c & x+c\\\ a^2-c^2 & b^2-c^2 & x^2+c^2\\\ a^3-c^3 & b^3-c^3 & x^3+c^3\end{array}\right|-f(x)\cdot\left|\begin{array}{ccc} 1 & 1 & 1\\\ a & b & c\\\ a^2 & b^2 & c^2\end{array}\right| \)
h fiind diferenta a doua a doua polinoame de grad trei am considerat ca trebuie sa fie de grad maxim trei.
P.S. Cand am postat solutia completata nu am observat ca aveati un reply "under construction" (refreshu asta...).
Si nu m-am suparat...
