Formula lui Euler
Moderator: Marius Dragoi
-
Andrei Velicu
- Euclid
- Posts: 27
- Joined: Wed Oct 17, 2007 9:20 am
- Location: Constanta
Formula lui Euler
Exista vreo demonstratie mai accesibila pentru formula lui Euler: \( e^{ix}=\cos x+i\sin x \)?
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
Cat de accesibila vrei Andrei? Eu stiu una care se invata la primul curs de Analiza Complexa si care foloseste dezvoltarea in serie Taylor, anume:
Se stie ca daca avem un numar complex \( z\in\mathbb{C} \) atunci
\( e^{z}=\sum_{n=0}^{\infty}\frac{z^{n}}{n!} \). In cazul nostru, pentru \( z=ix \), avem ca
\( e^{ix}=\sum_{n=0}^{\infty}\frac{(ix)^{n}}{n!}=\left(1+\frac{x^2}{2!}+\frac{x^{4}}{4!}+\ldots\right)+i\left(\frac{x}{1!}+\frac{x^{3}}{3!}+\ldots\right). \). Prima reprezinta dezvoltarea in serie Taylor a lui \( \cos \), iar a doua este cea a lui \( \sin \) de unde rezulta relatia lui Euler pe care ai pus-o tu la inceput.
Se stie ca daca avem un numar complex \( z\in\mathbb{C} \) atunci
\( e^{z}=\sum_{n=0}^{\infty}\frac{z^{n}}{n!} \). In cazul nostru, pentru \( z=ix \), avem ca
\( e^{ix}=\sum_{n=0}^{\infty}\frac{(ix)^{n}}{n!}=\left(1+\frac{x^2}{2!}+\frac{x^{4}}{4!}+\ldots\right)+i\left(\frac{x}{1!}+\frac{x^{3}}{3!}+\ldots\right). \). Prima reprezinta dezvoltarea in serie Taylor a lui \( \cos \), iar a doua este cea a lui \( \sin \) de unde rezulta relatia lui Euler pe care ai pus-o tu la inceput.
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.