Page 1 of 1

Geometrie cu vectori intr-un pentagon

Posted: Wed Jan 30, 2008 9:18 pm
by Filip Chindea
Fie \( ABCDE \) un pentagon inscriptibil si \( H_{1,2,3,4} \) ortocentrele \( \triangle ABC \), \( \triangle BCD \), \( \triangle CDE \), respectiv \( \triangle ACE \). Demonstrati ca \( H_1H_2H_3H_4 \) este paralelogram.

Posted: Thu Feb 21, 2008 10:54 am
by Razvan Balan
Problema iese imediat:
\( $\vec{H_4H_1}=\vec{OH_1}-\vec{OH_4} = \vec{OB} - \vec{OE}$ \) si \( $\vec{H_3H_2}=\vec{OH_2} - \vec{OH_3}=\vec{OB}-\vec{OE}=\vec{H_4H_1}$ \) si deci \( $H_1H_2H_3H_4$ \) este paralelogram.