Din nou o inegalitate

Moderators: Bogdan Posa, Laurian Filip

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Din nou o inegalitate

Post by Claudiu Mindrila »

Fie \( a,b,c \) lungimile laturilor unui triunghi. Aratati ca: \( \frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a} < \frac{5}{a+b+c} \)
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Notam a=x+y, b=y+z ,c=z+x ,x>0, y>0 ,z>0.Prin conditionare, putem presupune ca x+y+z=1 si inegalitatea devine :

\( \frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}<\frac{5}{2} \)


sau \( \frac{x}{1+x}+\frac{y}{1+y}+\frac{z}{1+z}>\frac{1}{2} \),

care este adevarata conform CBS


\( \sum {\frac{x}{1+x}}=\sum {\frac{x^2}{x+x^2}}\geq\frac{(x+y+z)^2}{x+y+z+x^2+y^2+z^2}=\frac{1}{1+x^2+y^2+z^2}>\frac{1}{1+x+y+z}=\frac{1}{2} \)
Post Reply

Return to “Clasa a VIII-a”