valorile lui \zeta(2k)
Moderator: Filip Chindea
- Dragos Fratila
- Newton
- Posts: 313
- Joined: Thu Oct 04, 2007 10:04 pm
valorile lui \zeta(2k)
Demonstrati ca \( \zeta(2k) = q_k\pi^{2k},\forall k\ge 1 \) unde \( q_k\in\mathbb{Q} \)
"Greu la deal cu boii mici..."
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
Pai asa o fi, din moment ce Euler a demonstrat ca daca definim functia zeta a lui Riemann ca fiind \( \zeta(s)=\sum_{s \ge 1} \frac{1}{n^s} \) (ma rog, Euler nu stia atunci ca asa se numeste functia
), atunci are loc urmatoare formula:
\( \zeta(2k)=\frac{(-1)^{k-1}(2\pi)^{2k}B_{2k}}{2(2k)!} \),
unde \( B_{k} \) reprezinta numerele lui Bernoulli si sunt date de urmatoarea formula:
\( \frac{x}{e^x-1}=\sum_{n \ge 0} \frac{B_nx^{n}}{n!} \).
Mai mult, se stie ca toate numerele Bernoulli sunt numere rationale, \( B_{2k+1}=0, \forall k\geq 1 \) iar primele numere Bernoulli au valorile: \( B_{0}=1, B_{1}=-\frac{1}{2}, B_{2}=\frac{1}{6}, B_{4}=-\frac{1}{30} \) etc.
P.S. Pentru alte detalii legate de minunatele numere ale lui Bernoulli si Euler recomand acest articol.
\( \zeta(2k)=\frac{(-1)^{k-1}(2\pi)^{2k}B_{2k}}{2(2k)!} \),
unde \( B_{k} \) reprezinta numerele lui Bernoulli si sunt date de urmatoarea formula:
\( \frac{x}{e^x-1}=\sum_{n \ge 0} \frac{B_nx^{n}}{n!} \).
Mai mult, se stie ca toate numerele Bernoulli sunt numere rationale, \( B_{2k+1}=0, \forall k\geq 1 \) iar primele numere Bernoulli au valorile: \( B_{0}=1, B_{1}=-\frac{1}{2}, B_{2}=\frac{1}{6}, B_{4}=-\frac{1}{30} \) etc.
P.S. Pentru alte detalii legate de minunatele numere ale lui Bernoulli si Euler recomand acest articol.
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.