Concursul Matefbc editia a 3-a problema 6

Moderators: Bogdan Posa, Laurian Filip

Post Reply
User avatar
Andi Brojbeanu
Bernoulli
Posts: 294
Joined: Sun Mar 22, 2009 6:31 pm
Location: Targoviste (Dambovita)

Concursul Matefbc editia a 3-a problema 6

Post by Andi Brojbeanu »

Fie triunghiul isoscel \( ABC \) cu \( AB=BC \) si \( M, P\in (AB) \) astfel incat \( MA=BP \). Fie \( Q \) intersectia perpendicularei din \( A \) pe \( CM \) cu latura \( BC \) si \( \{R\}=CM\cap QP \). Demonstrati ca \( \angle{AQC}=\angle{PQB} \) si \( RA=RB \).
Post Reply

Return to “Clasa a VII-a”