x,y,z>0, x+y+z=1

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

x,y,z>0, x+y+z=1

Post by Claudiu Mindrila »

Daca \( x, \ y, \ z>0 \) sunt a.i. \( x+y+z=1 \), atunci \( xy+yz+zx \ge 4 (x^2y^2+y^2z^2+z^2x^2)+5xyz \).
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Deconditionand inegalitatea este echivalenta cu

\( (\sum_{cyc} xy)\cdot(x+y+z)^2\ge 4\sum_{cyc} x^2y^2+5xyz(x+y+z) \) sau

\( \sum_{sym}x^3y\ge 2\sum_{cyc}x^2y^2 \) care este adevarata.
Post Reply

Return to “Clasa a IX-a”