Egalitate cu arii de triunghiuri

Post Reply
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Egalitate cu arii de triunghiuri

Post by alex2008 »

Fie triunghiul \( ABC \) si un punct \( M \) in interiorul triunghiului prin care se duc paralele \( FN \) la \( AC \) , \( PQ \) la \( AB \) si \( DE \) la \( BC \) cu \( D \in [AB] ,\ E \in [AC] ,\ P \in [AC] ,\ Q \in [BC] ,\ F \in [BC] \) si \( N \in [AB] \) . Se noteaza cu \( S_1 \) aria lui \( \Delta MND \) , \( S_2 \) aria lui \( \Delta PME \) si \( S_3 \) aria lui \( \Delta QFM \) . Sa se demonstreze ca \( S_{ABC}=(\sqrt{S_1}+\sqrt{S_2}+\sqrt{S_3})^2 \) .
. A snake that slithers on the ground can only dream of flying through the air.
User avatar
Mateescu Constantin
Newton
Posts: 307
Joined: Tue Apr 21, 2009 8:17 am
Location: Pitesti

Post by Mateescu Constantin »

Lema: Raportul ariilor a doua triunghiuri asemenea este egal cu patratul raportului de asemanare al celor doua triunghiuri.

\( \triangle NDM\sim\triangle ABC \) \( \Rightarrow \frac{S_1}{S_{ABC}}=\left(\frac{MD}{BC}\right\)^{2} \) \( \Leftrightarrow \sqrt{S_1}=\sqrt{S}\cdot\frac{MD}{BC}. \)

Analog obtinem si \( \sqrt{S_2}=\sqrt{S_{ABC}}\cdot\frac{ME}{BC} \), \( \sqrt{S_3}=\sqrt{S_{ABC}}\cdot\frac{QF}{BC} \)

Adunand cele 3 relatii si tinand cont ca \( DMQB \) si \( MECF \) sunt paralelograme

\( \Rightarrow \sqrt{S_1}+\sqrt{S_2}+\sqrt{S_3}=\sqrt{S_{ABC}}\cdot\frac{MD+ME+QF}{BC}=\sqrt{S_{ABC}}\cdot\frac{BQ+QF+FC}{BC}=\sqrt{S_{ABC}}. \)

Prin ridicarea la patrat a ultimei relatii obtinem egalitatea ceruta.
Post Reply

Return to “Clasa a 8-a”