Search found 2 matches

by Arbos
Mon Jan 11, 2010 9:41 am
Forum: Inegalitati
Topic: Inegalitate conditionata cu suma
Replies: 4
Views: 732

Inegalitate conditionata cu suma

Daca \( sqrt{a}+sqrt{b}+sqrt{c}=1 \), atunci
\( a(\sqrt{b}+\sqrt{c})+b(\sqrt{c}+\sqrt{a})+c(\sqrt{a}+\sqrt{b})+3sqrt{abc}\leq\frac{1}{3} \)
by Arbos
Sat Mar 14, 2009 9:23 pm
Forum: Inegalitati
Topic: Inegalitate conditionata cu suma
Replies: 4
Views: 732

Inegalitate conditionata

Obs. Luand a=0 obtinem urmatorul tip de inegalitate conditionata: "Daca x+y=1 atunci $x^2y+y^2x \leq\frac{1}{4}$ ", adevarata din xy\leq\frac{(x+y)^2}{4} . Fie acum x=\sqrt{a}+sqrt{b} si y=\sqrt{c} cu alegerea lui c cel mai mare dintre a si b. Inegalitatea din Obs. devine: (\sqrt{a}+\sqrt{...

Go to advanced search