Search found 56 matches
- Sat Jun 05, 2010 12:08 pm
- Forum: Algebra
- Topic: Matrice complexe A, B si pentru care A comuta cu AB-BA
- Replies: 5
- Views: 970
- Wed Jun 02, 2010 7:21 pm
- Forum: Algebra
- Topic: Matrice complexe A, B si pentru care A comuta cu AB-BA
- Replies: 5
- Views: 970
Se arata, mai intai, ca AB-BA este nilpotenta, concluzia reiesind din aceasta proprietate. Sa aratam acum ca AB-BA este nilpotenta. (AB-BA)^{m+1}=C^{m+1}=C^m(AB-BA)=AC^mB-C^mBA (caci A si C comuta). Trecem la urma in aceasta ultima relatie si obtinem: tr(C^m)=tr(AC^mB-C^mBA)=0 \forall m\in\mathbb{N}...
- Sat May 22, 2010 12:52 pm
- Forum: Analiza matematica
- Topic: Exista f:[0,1]->R care are primitive si e surjectiva
- Replies: 2
- Views: 698
- Thu Apr 15, 2010 6:10 pm
- Forum: Algebra
- Topic: O problema de Marius Cavachi
- Replies: 1
- Views: 368
O problema de Marius Cavachi
Fie \( A\in\mathcal{M}_{n}(\mathbb{Z}) \) o matrice inversabila astfel incat pentru orice \( k\in\mathbb{N} \) ecuatia \( X^k=A \) are solutii in \( \mathcal{M}_{n}(\mathbb{Z}) \). Aratati ca \( A \) este matricea unitate.
Marius Cavachi
Marius Cavachi
- Tue Mar 30, 2010 6:18 pm
- Forum: Analiza matematica
- Topic: 3x_n+x_{3n} convergent implica x_n convergent
- Replies: 1
- Views: 302
3x_n+x_{3n} convergent implica x_n convergent
Sa se arate ca daca sirul \( (x_n)_{n\geq 1} \) este marginit si \( (3x_n+x_{3n})_{n\geq 1} \) este convergent, atunci \( (x_n)_{n\geq 1} \) este convergent.
Grigore Moisil, Zalau
Grigore Moisil, Zalau
- Sat Mar 20, 2010 2:47 am
- Forum: Analiza matematica
- Topic: functie
- Replies: 15
- Views: 1026
- Thu Mar 11, 2010 3:35 pm
- Forum: Analiza matematica
- Topic: Sir convergent
- Replies: 5
- Views: 463
- Mon Mar 08, 2010 9:56 pm
- Forum: Analiza matematica
- Topic: sir
- Replies: 6
- Views: 368
- Mon Mar 08, 2010 5:20 pm
- Forum: Analiza matematica
- Topic: sir
- Replies: 6
- Views: 368
- Mon Mar 08, 2010 5:17 pm
- Forum: Analiza matematica
- Topic: Sir convergent
- Replies: 5
- Views: 463
Sir convergent
Fie \( (x_n)_{n\geq 1} \) un sir marginit de numere reale. Stiind ca \( \lim_{n\to\infty}(x_{n+1}-x_{n})=0 \) sa se arate ca sirul este convergent.
***
***
- Sun Mar 07, 2010 9:57 am
- Forum: Algebra
- Topic: Determinant nenegativ
- Replies: 15
- Views: 871
Sa demonstram: Daca A,X\in\mathcal{M}(\mathbb{C}) cu X nilpotenta si cu AX=XA atunci \det(A+X)=\det(A) . Daca A este inversabila atunci egalitatea de aratat ramane(prin impartire prin \det(A) ) \det(A^{-1}X+I_n)=1 .(*) Cum AX=XA si X nilpotenta \Rightarrow (A^{-1}X)^{n}=(A^{-1})^nX^{n}=0_n \Rightarr...
- Sun Feb 28, 2010 7:01 pm
- Forum: Analiza matematica
- Topic: Ceva derivabilitate
- Replies: 1
- Views: 262
Ceva derivabilitate
Sa se determine functiile \( f,g:\mathbb{R}\rightarrow\mathbb{R} \) astfel incat \( f \) sa fie derivabila si sa se verifice ecuatia functionala:
\( f^{\prime}(x+g(y))=g(x)+y \forall x,y\in\mathbb{R} \)
GM
\( f^{\prime}(x+g(y))=g(x)+y \forall x,y\in\mathbb{R} \)
GM
- Sun Feb 28, 2010 10:36 am
- Forum: Algebra
- Topic: Determinant nenegativ
- Replies: 15
- Views: 871
- Sat Feb 27, 2010 7:58 pm
- Forum: Algebra
- Topic: Determinant nenegativ
- Replies: 15
- Views: 871
- Fri Feb 26, 2010 10:50 pm
- Forum: Algebra
- Topic: polinoame de matrici
- Replies: 2
- Views: 296
Am gasit o solutie mai usoara zic eu. Este suficient sa aratam ca \det(I_n-AB)=\det(I_m-BA),A\in\mathcal{M}_{n,m}(\mathbb{C}),B\in\mathcal{M}_{m,n}(\mathbb{C}) caci putem considera, pentru cazul cu x A\to \frac{1}{x}A . Consideram n>m Fie C=\(A\mbox{ } 0_{n-m}) si D=\(B\\0_{n-m}\) , C,D\in\mathcal{M...
- Fri Feb 26, 2010 10:26 pm
- Forum: Analiza matematica
- Topic: continuitate...
- Replies: 2
- Views: 311
- Sun Feb 21, 2010 9:28 pm
- Forum: Clasa a X-a
- Topic: Inegalitate cu numere complexe
- Replies: 2
- Views: 208
Deomnstram |z_1\overline{z_2}+z_2\overline{z_1}|\le 2|z_1z_2| Ridicand la patrat obtinem (z_1\overline{z_2}+z_2\overline{z_1})(z_1\overline{z_2}+z_2\overline{z_1})=2|z_1|^2|z_2|^2+z_1^2\overline{z_2}^2+z_2^2\overline{z_1}^2\leq4|z_1|^2|z_2|^2\Leftrightarrow 2|z_1|^2|z_2|^2-z_1^2\overline{z_2}^2-z_2^...