Search found 121 matches
- Sun Aug 29, 2010 5:30 pm
- Forum: Algebra
- Topic: Matrice de ordin 2
- Replies: 1
- Views: 82
- Sun Aug 29, 2010 3:14 pm
- Forum: Analiza matematica
- Topic: O limita
- Replies: 1
- Views: 106
Expresia 2^{\frac{2-x}{x}}+4^{\frac{4-x}{x}}+6^{\frac{6-x}{x}}+12^{\frac{12-x}{x}}\to \frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{12}=1 Deci \lim_{x\to\infty}\ \left( 2^{\frac{2-x}{x}}+4^{\frac{4-x}{x}}+6^{\frac{6-x}{x}}+12^{\frac{12-x}{x}}\ \right)^x=e^{\lim_{x\to\infty} x\ \left( 2^{\frac{2-x}{x}...
- Sat Aug 28, 2010 5:17 pm
- Forum: Analiza matematica
- Topic: Sir care nu poate fi fractie polinomiala
- Replies: 2
- Views: 407
Presupunem ca exista cele doua polinoame . Ar rezulta ca a_{n+1}-a_{n}=\frac{1}{2^{(n+1)^2}}=\frac{f(n+1)}{g(n+1)}-\frac{f(n)}{g(n)}=\frac{h(n)}{g(n+1)g(n)} Fie sirul c_n=\frac{1}{2^{(n+1)^2}} de unde \frac{c_{n+1}}{c_n}=\frac{2^{(n+1)^2}}{2^{(n+2)^2}}=\frac{1}{2^{2n+3}}=\frac{h(n+1)}{g(n+2)g(n+1)}\...
- Mon Mar 15, 2010 11:22 pm
- Forum: Chat de voie
- Topic: OJM 2010
- Replies: 10
- Views: 999
Domn profesor Nicula ce spuneti de rezolvarea mea la punctul b). Presupunem a_1>2 si vom demonstra ca a_2>a_1 Daca a_2\le a_1 atunci a_1^2=|z^2+\frac{1}{z_1^2}+2|\le a_2+2\le a_1+2 Adica (a_1-2)(a_1+1)\le 0 contradictie!!! Acum deoarece a_1>2 aplicam punctul 1 al problemei pana la un k oarecare. Pri...
- Fri Mar 12, 2010 9:26 pm
- Forum: Chat de voie
- Topic: OJM 2010
- Replies: 10
- Views: 999
- Sat Mar 06, 2010 6:15 pm
- Forum: Clasa a X-a
- Topic: Afixele unui triunghi echilateral
- Replies: 2
- Views: 314
Afixele unui triunghi echilateral
Fie \( a,b,c\in\mathbb{C} \) distincte doua cate doua astfel incat
\( (a-b)^5+(b-c)^5+(c-a)^5=0 \). Aratati ca \( a,b,c \) sunt afixele unui triunghi echilateral.
\( (a-b)^5+(b-c)^5+(c-a)^5=0 \). Aratati ca \( a,b,c \) sunt afixele unui triunghi echilateral.
- Sat Mar 06, 2010 6:12 pm
- Forum: Clasa a X-a
- Topic: Numere complexe
- Replies: 1
- Views: 282
Numere complexe
Fie \( z_1,z_2,z_3\in\mathbb{C} \) astfel incat \( |z_1|=|z_2|=|z_3|=1 \) si \( \frac{z_1^2}{z_2z_3}+\frac{z_2^2}{z_3z_1}+\frac{z_3^2}{z_1z_2}=-1 \)
Calculati \( S=|z_1+z_2+z_3| \)
Calculati \( S=|z_1+z_2+z_3| \)
- Tue Mar 02, 2010 10:39 pm
- Forum: Clasa a IX-a
- Topic: a,b,c
- Replies: 5
- Views: 141
Din egalitatea mediilor avem \frac{2bc}{b+c}\le\frac{b+c}{2} Scriind analoagele si insumandule obtinem \frac{2bc}{b+c}+\frac{2ac}{a+c}+\frac{2ab}{a+b}\le \frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}=a+b+c In enunt avem egalitate deci trebuie sa avem egalitate in inegalitatea mediilor. Cazul de egalitat...
- Tue Mar 02, 2010 10:33 pm
- Forum: Clasa a IX-a
- Topic: a,b,c
- Replies: 5
- Views: 141
- Tue Mar 02, 2010 9:38 pm
- Forum: Clasa a X-a
- Topic: Functie
- Replies: 1
- Views: 252
Functie
Determinati toate functiile \( f:\mathbb{R}\rightarrow\mathbb{R} \) cu urmatoarea proprietate
\( f(x+y)+f(x-y)=2f(x)\cos y \)
\( f(x+y)+f(x-y)=2f(x)\cos y \)
- Tue Mar 02, 2010 12:01 am
- Forum: Clasa a X-a
- Topic: Un pic de combinatorica
- Replies: 1
- Views: 220
- Sat Feb 27, 2010 9:23 pm
- Forum: Clasa a X-a
- Topic: Maximul unei expresii
- Replies: 1
- Views: 258
Maximul unei expresii
Daca \( a_1,a_2\in\mathbb{R} \) astfel incat \( a_1^2+a_2^2=1 \), sa se demonstreze ca maximul expresiei \( a_1a_2+\frac{1}{2}\cdot a_2^2 \) este \( \cos\frac{\pi}{5} \). Pentru ce valori ale numerelor \( a_1,a_2 \) se realizeaza acest maxim?
- Fri Feb 26, 2010 10:56 pm
- Forum: Analiza matematica
- Topic: continuitate...
- Replies: 2
- Views: 311
- Mon Feb 22, 2010 8:31 pm
- Forum: Clasa a IX-a
- Topic: Aflati functia!
- Replies: 1
- Views: 164
- Sun Feb 21, 2010 7:44 pm
- Forum: Clasa a X-a
- Topic: Inegalitate cu numere complexe
- Replies: 2
- Views: 208
Inegalitate cu numere complexe
Fie \( z_1,z_2\in\mathbb{C} \).Demonstrati urmatoarea inegalitate
\( |z_1|+|z_2|\le |z_1+z_2|+\frac{2|z_1z_2|}{|z_1+z_2|} \)
\( |z_1|+|z_2|\le |z_1+z_2|+\frac{2|z_1z_2|}{|z_1+z_2|} \)
- Wed Feb 17, 2010 11:45 pm
- Forum: Clasa a IX-a
- Topic: O inegalitate interesanta
- Replies: 3
- Views: 284
Da acum am vazut. Revenind acolo LHS\ge\frac{9}{2(a^2b+b^2c+c^2a)} Ramane de demonstrat a^2b+b^2c+c^2a\le 3 Dar a^2b+b^2c+c^2a\le\sqrt{(a^2+b^2+c^2)(a^2b^2+b^2c^2+c^2a^2)}=\sqrt{3(a^2b^2+b^2c^2+c^2a^2)} (1) a^2b^2+b^2c^2+c^2a^2\le\frac{(a^2+b^2+c^2)^2}{3}=3 Acum revenind in (1) s-a terminat. Sper ca...
- Wed Feb 17, 2010 10:57 pm
- Forum: Clasa a IX-a
- Topic: O inegalitate interesanta
- Replies: 3
- Views: 284
\sum_{cyc}\frac{a^3}{c^2+ab}=\sum_{cyc}\frac{a^4}{ac^2+a^2b}\ge\frac{(a^2+b^2+c^2)^2}{\sum_{sym}a^2b}=\frac{9}{\sum_{sym}a^2b} Deci ramane de demonstrat \sum_{sym}a^2b\le 6=2(a^2+b^2+c^2)\Longleftrightarrow \sum_{cyc}a(b^2+c^2)\le 2(a^2+b^2+c^2)\Longleftrightarrow \sum_{cyc}a(3-a^2)\le 2(a^2+b^2+c^...