Search found 2 matches
- Sun Apr 27, 2008 4:45 pm
- Forum: Analiza matematica
- Topic: Functie lipschitziana cu integrala nula
- Replies: 1
- Views: 605
Functie lipschitziana cu integrala nula
Fie \( f: [0,1] \to \mathbb{R} \) ai \( |f(x) - f(y)| \leq |x - y| \) si \( \int_0^1f(x)dx = 0 \). Sa se arate ca \( \int_0^xf(t)dt \geq \frac {1}{2}x(x - 1) \) pt orice x in [0,1].
- Sat Apr 26, 2008 1:04 pm
- Forum: Analiza matematica
- Topic: Inegalitate integrala cu functii concave
- Replies: 4
- Views: 1132
Inegalitate integrala cu functii concave
Fie \( f:[0,1]\to\mathbb{R} \) o functie concava cu \( f(0)=1 \). Sa se arate ca \( \frac32\int_0^1xf(x)dx\leq\int_0^1f(x)dx-\frac14 \). Cand are loc egalitatea?
Dan Marinescu & Viorel Cornea, Lista scurta ONM 2007
Dan Marinescu & Viorel Cornea, Lista scurta ONM 2007