Fie sirul \( (x_{n})_{n\geq 1} \) definit prin \( x_{1}\in (0, \frac{1}{3}) \) si \( x_{n+1}=x_{n}-3x_{n}^{2},\forall n\geq 1 \). Aratati ca:
i) sirul \( (x_{n}) \) este convergent la zero;
ii) \( \lim_{n\to\infty}nx_{n}=\frac{1}{3} \);
iii) \( \lim_{n\to\infty}\frac{n}{\ln n}\left(nx_{n}-\frac{1}{3}\right)=-\frac{1}{3} \).
Daniela Vasile, Olimpiada locala Constanta, 2008
Sir convergent si calcule de limite
Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi
- Tudorel Lupu
- Euclid
- Posts: 15
- Joined: Mon Oct 01, 2007 8:58 pm
- Location: Constanta
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
i) Prin inductie se arata ca \( x_n\in(0,\frac{1}{3}) \), \( x_n \) este descrescator si prin trecere la limita in relatia de recurenta se obtine concluzia.
ii) Se aplica teorema Cesaro-Stolz pentru \( a_n=n \) si \( b_n=\frac{1}{x_n} \) , folosind relatia de recurenta si faptul ca \( \frac{x_{n+1}}{x_n}=1-3x_n\longrightarrow1 \) daca \( n\to\infty \)
iii) Analog \( \lim_{n\to\infty}\frac{n}{\ln n}\left(nx_n-\frac{1}{3}\right)=\lim_{n\to\infty}\frac{nx_n}{\ln n}\left(n-\frac{1}{3x_n}\right)= \)
\( \frac{1}{3}\lim_{n\to\infty}\frac{n+1-\frac{1}{3x_{n+1}}-n+\frac{1}{3x_n}}{\ln {(n+1)}-\ln n}=\frac{1}{3}\lim_{n\to\infty}\frac{n(1-\frac{x_n}{x_{n+1}})}{\ln (1+\frac{1}{n})^n}=\frac{1}{3}\lim_{n\to\infty}(-3)(nx_n)\left(\frac{x_n}{x_{n+1}\right)=-\frac{1}{3} \)
ii) Se aplica teorema Cesaro-Stolz pentru \( a_n=n \) si \( b_n=\frac{1}{x_n} \) , folosind relatia de recurenta si faptul ca \( \frac{x_{n+1}}{x_n}=1-3x_n\longrightarrow1 \) daca \( n\to\infty \)
iii) Analog \( \lim_{n\to\infty}\frac{n}{\ln n}\left(nx_n-\frac{1}{3}\right)=\lim_{n\to\infty}\frac{nx_n}{\ln n}\left(n-\frac{1}{3x_n}\right)= \)
\( \frac{1}{3}\lim_{n\to\infty}\frac{n+1-\frac{1}{3x_{n+1}}-n+\frac{1}{3x_n}}{\ln {(n+1)}-\ln n}=\frac{1}{3}\lim_{n\to\infty}\frac{n(1-\frac{x_n}{x_{n+1}})}{\ln (1+\frac{1}{n})^n}=\frac{1}{3}\lim_{n\to\infty}(-3)(nx_n)\left(\frac{x_n}{x_{n+1}\right)=-\frac{1}{3} \)
Last edited by Marius Mainea on Fri Feb 13, 2009 1:33 pm, edited 1 time in total.
-
cazacu daniel
- Posts: 1
- Joined: Wed Feb 11, 2009 4:04 pm
- Location: Bucuresti
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm
Daniel, te sfatuiesc sa citesti cu atentie din manual ipoteza aplicabilitatii lemei Cesaro-Stolz .cazacu daniel wrote:Am o intrebare, poate ma lamureste domnul Marius Mainea: cand se aplica Cezaro-Stolz
pentru \( \frac {n-\frac {1}{3xn}}{\ln n} \) nu ar trebui demonstrat in prealabil ca sirul \( n-\frac {1}{3xn} \) este nemarginit?
Nu-i decat un mic efort. Si daca eventual nu intelegi, abia atunci intreaba-l pe dl. profesor. Desi dl. profesor
ti-a raspuns la intrebare tot printr-o intrebare (dansu-i dragut, nu ca mine !), tot acolo te-a trimis : la manual.