Page 1 of 1
Calculul integralei pe R a functiei e^{-x^2}
Posted: Fri Sep 28, 2007 10:29 am
by Ovidiu Jianu
Dati cat mai multe solutii distincte pentru calculul integralei \( \int_{-\infty}^{\infty}e^{-x^2}dx \).
Re: integrala din e la x patrat dx
Posted: Mon Oct 08, 2007 3:28 am
by K!!
jianuovidiu wrote:\( \int_{-\infty}^{\infty}e^{-x^2}dx \).
I don't speak romanian, but I think you may understand me.
\( \begin{eqnarray*}
I &=& \int_{ - \infty }^\infty {e^{ - x^2 } \,dx}\\
I^2 &=& \int_{ - \infty }^\infty {e^{ - x^2 } \,dx} \, \cdot \int_{ - \infty }^\infty {e^{ - y^2 } \,dy}\\
&=& \int_{ - \infty }^\infty {\int_{ - \infty }^\infty {e^{ - \left( {x^2 + x^2 } \right)} \,dx\,dy} }
\end{eqnarray*} \)
Introducing polar coordinates defined by
\( x=r\cos\theta \) &
\( y=r\sin\theta \), it remains to compute
\( I^2 = \int_0^\infty {\int_0^{2\pi } {re^{ - r^2 } \,dr\,d\theta } } \).
It follows that
\( I^2=\pi \) and we happily get
\( I=\sqrt{\pi} \).