O problema cu un sir, poate banala...
Posted: Tue Dec 11, 2007 1:38 am
Este sirul \( x_n = \frac{2\cdot 4 \cdots (2n)}{1\cdot 3\cdots (2n-1)} \) convergent?
Demonstratie. Presupunem prin absurd ca \( x_n\rightarrow L\in \mathbb{R}^*_+ \) (finit). Notam \( y_n=\left(\frac {x_{n+1}}{x_n}\right)^n\ \rightarrow\ l\ >\ 1 \). Asadar si \( \sqrt[n]{y_1y_2\ldots y_n}\ \rightarrow\ l \) , adica \( \sqrt[n]{\frac {x_2}{x_1}\cdot\frac {x_3^2}{x_2^2}\cdot \frac {x_4^3}{x_3^3}\cdot\cdot\cdot\cdot\cdot\frac {x_{n+1}^n}{x_n^n}}=\frac {x_{n+1}}{\sqrt[n]{x_1x_2\ldots x_n}}\ \rightarrow\ \frac LL\ =\ 1\ \Longrightarrow\ l\ =\ 1 \), absurd.Teorema. Fie un sir strict crescator de termeni pozitivi \( (x_n)\ ,\ n\in\mathbb{N}^* \)
pentru care \( \frac {x_{n+1}}{x_n}\rightarrow 1 \) si \( \left(\frac {x_{n+1}}{x_n}\right)^n\rightarrow\ l\ >\ 1 \). Atunci \( x_n\ \rightarrow\ \infty \) .