Page 1 of 1

Concursul "Teodor Topan" - problema 3

Posted: Mon Dec 03, 2007 2:26 pm
by maky
Triunghiul \( ABC \) are latura \( \left[BC\right] \) inclusa in planul \( \alpha \) iar varful \( A \) in exteriorul planului \( \alpha \).
Fie \( E\in\left(AB\right) \) si \( F\in\left(AC\right) \) astfel incat \( AE=6EB \) iar \( FC=2FA \). Se cere:
a) Stabiliti pozitia dreptei \( EF \) fata de planul \( \alpha \).
b) Daca \( EF\cap\alpha=\left{T\right} \), sa se afle \( TB \) stiind ca \( BC=22 \)cm.
Tifrea Ioan, Zalau

Posted: Sun Jun 08, 2008 8:05 pm
by Marius Mainea
a) dreapta intersecteaza planul intr-un punct.

b) Aplicam teorema lui Menelaus:\( \frac{TC}{TB}\cdot\frac{BE}{EA}\cdot\frac{AF}{FC}=1 \)

Rezulta \( TB=2 \)