Page 1 of 1
Concursul "Teodor Topan" - problema 2
Posted: Mon Dec 03, 2007 2:25 pm
by maky
Stabiliti intervalul caruia apartine fiecare din numerele reale \( x,y,z \) daca \( x^2+4y^2+z^2+13=4\left(3y+2z-x\right) \)
Sacota Florian, Zalau
Posted: Sat May 24, 2008 7:12 pm
by Marius Dragoi
\( x^2+4y^2+z^2+13=4(3y+2z-x) \Rightarrow {(x+2)}^2 + {(2y-3)}^2 + {(z-4)}^2 = 16 \)
Atunci avem: \( |x+2| \leq 4 \) , \( |2y-3| \leq 4 \) , \( |z-4| \leq 4 \) \( \Rightarrow x \in [-6,2] , y \in [-\frac {1}{2} , \frac {7}{2}] , z \in [0,8] \)