IMAC 2010 Problema 2
Posted: Wed Jun 02, 2010 3:14 pm
Fie \( a, b, c>0 \). Sa se arate ca:
\( a^3+b^3+c^3\ge\frac{a^2b^2(a+b)}{a^2+b^2}+\frac{b^2c^2(b+c)}{b^2+c^2}+\frac{a^2c^2(a+c)}{a^2+c^2} \).
I.V.Maftei, Marius Radulescu
(rev. Arhimede)
\( a^3+b^3+c^3\ge\frac{a^2b^2(a+b)}{a^2+b^2}+\frac{b^2c^2(b+c)}{b^2+c^2}+\frac{a^2c^2(a+c)}{a^2+c^2} \).
I.V.Maftei, Marius Radulescu
(rev. Arhimede)