Page 1 of 1

JBTST V 2010, Problema 3

Posted: Sun May 23, 2010 12:06 pm
by Andi Brojbeanu
Fie \( a, b, c \) numere reale cu proprietatea ca \( ab+bc+ca=1 \). Sa se arate ca:
\( \frac{(a+b)^2+1}{c^2+2}+\frac{(b+c)^2+1}{a^2+2}+\frac{(c+a)^2+1}{b^2+2}\ge 3 \).

Posted: Sun May 23, 2010 2:40 pm
by Claudiu Mindrila
Se foloseste inegalitatea cbs

Posted: Sun May 23, 2010 4:10 pm
by Andi Brojbeanu
\( LHS=\sum\frac{(a+b)^2}{c^2+2}+\frac{1}{c^2+2}\stackrel{\small CBS}{\ge} \frac{(a+b+b+c+c+a)^2}{a^2+2+b^2+2+c^2+2}+\frac{(1+1+1)^2}{a^2+2+b^2+2+c^2+2}=\frac{4(a+b+c)^2+9}{a^2+b^2+c^2+6}=\frac{4(a^2+b^2+c^2)+8(ab+bc+ca)+9}{a^2+b^2+c^2+6}\ge \)
\( \ge\frac{3(a^2+b^2+c^2)+(ab+bc+ca)+8(ab+bc+ca)+9}{a^2+b^2+c^2+6}=\frac{3(a^2+b^2+c^2)+1+8+9}{a^2+b^2+c^2+6}=\frac{3(a^2+b^2+c^2+6)}{a^2+b^2+c^2+6}=3=RHS \)