Page 1 of 1

Functia exponentiala

Posted: Mon May 03, 2010 2:45 pm
by andreiCNC
1.\(
\2^x > {x^2}\forall x > 5\
\)


2.\(
\2^x > {x^3}\forall x > 10\


\)


E trecuta la clasa a 10 a, dar se accepta orice fel de rezolvare. Eu sunt clasa a 12 a acum.

Posted: Mon May 03, 2010 3:16 pm
by Beniamin Bogosel
Rezolvarea e de clasa a 10-a... Pur si simplu logaritmezi expresiile si studiezi monotonia functiei \( \frac{x}{\ln x} \).

Posted: Mon May 03, 2010 3:48 pm
by andreiCNC
deci am \( \ln {2^x} > \ln {x^2} \)

apoi fac o functie din ea de gen \( \ln {2^x} - \ln {x^2} > 0 \)

asa ? si apoi cum o aduc la x/lnx ?

Posted: Mon May 03, 2010 4:04 pm
by mihai++
succes la bac atunci :)).
\( \frac{x}{\ln x}>\frac{2}{\ln 2} \)

Posted: Mon May 03, 2010 4:39 pm
by andreiCNC
\( \frac{x}{\ln x}>\frac{3}{\ln 2} \)


doar ca mie mi`a dat f(x) > f(e)

dar 3/ln2 > e

ori am gresit undeva, ori a 2 a nu iese la fel


p.s. mersi mult pentru ajutor pana acum

Posted: Mon May 03, 2010 10:18 pm
by Beniamin Bogosel
\( \frac{x}{\ln x}>\frac{10}{\ln 10}>\frac{3}{\ln 2} \), ultima inegalitate fiind echivalenta cu \( 1024>1000 \).

Posted: Tue May 04, 2010 1:56 pm
by BogdanCNFB
Folosim [x]<x<[x]+1, notam [x]=k si apoi inductie