JBTST I 2010, Problema 4
Posted: Mon Apr 12, 2010 10:50 pm
Fie \( n \) un numar natural neneul si numerele intregi \( x_1, x_2, ...., x_n, y_1, y_2, ...., y_n \) cu proprietatile:
a)\( x_1+x_2+....+x_n=y_1+y_2+....+y_n=0 \);
b)\( x_1^2+y_1^2=x_2^2+y_2^2=....=x_n^2+y_n^2 \).
Sa se arate ca \( n \) este par.
Dan Nedeianu
a)\( x_1+x_2+....+x_n=y_1+y_2+....+y_n=0 \);
b)\( x_1^2+y_1^2=x_2^2+y_2^2=....=x_n^2+y_n^2 \).
Sa se arate ca \( n \) este par.
Dan Nedeianu