Page 1 of 1
Conc. nat. "Laurentiu Duican" Brasov 2009 probl. 4
Posted: Mon Mar 22, 2010 12:48 am
by Andi Brojbeanu
Sa se arate ca un triunghi \( ABC \), avand lungimile laturilor \( a, b \) si \( c \), este echilateral daca si numai daca:
\( \frac{a^2+b^2}{c}+\frac{b^2+c^2}{a}+\frac{c^2+a^2}{b}=2(a+b+c) \).
D.M. Batinetu-Giurgiu
Posted: Wed Mar 31, 2010 11:24 am
by Alin
"Spargem" termenii si aplicam CBS forma Titu Andreescu (nu sunt sigur daca cei de-a 7-a au facut asa ceva) : \( \frac {a^2}{c}+\frac{b^2}{c}+\frac{b^2}{a}+\frac{c^2}{a}+\frac{c^2}{b}+\frac{a^2}{b}\ge\frac{\left(a+b+b+c+c+a\right)^2}{c+c+a+a+b+b}=\frac{4\left(a+b+c\right)^2}{2\left(a+b+c\right)}=2(a+b+c) \) cu egalitate daca si numai daca \( \frac{a}{c}=\frac{b}{c} \) si \( \frac{b}{a}=\frac{c}{a} \) de unde se poate deduce a=b=c.
Teorema directa este simpla. \( \frac{2a^2}{a}\cdot 3=6a=2\cdot 3a \).