Page 1 of 1

SEEMOUS 2010- problema 3

Posted: Fri Mar 12, 2010 2:55 pm
by Radu Titiu
a)Aratati ca pentru orice matrice \( A \in \mathcal{M}_2(\mathbb{R}) \) exista \( B,C \in \mathcal{M}_2(\mathbb{R}) \) a.i. \( A=B^2+C^2 \).

b) nu exista \( B,C \in \mathcal{M}_2(\mathbb{R}) \) a.i. \( BC=CB \) si \( \begin{pmatrix} 0 & 1 \\ 1 & 0\end{pmatrix}=B^2+C^2 \).

Posted: Fri Mar 12, 2010 4:01 pm
by Cosmin Pohoata
Problema asta nu s-a mai dat tot pe la Seemous/IMC anii trecuti?