Page 1 of 1

Concursul "Viitorii matematicieni" Problema 2

Posted: Sat Jan 09, 2010 12:57 pm
by salazar
2.a) Aratati ca \( \sqrt{2(a^2+b^2)}\ge a+b \), unde a, b sunt numere reale.
b) Daca x, y, z sunt numere reale si \( xy+yz+zx=15 \), aratati ca:
\( \sqrt{x^4-6x^2+13}+\sqrt{y^4+z^4+2y^2z^2-4y^2-4z^2+68}\ge 10\sqrt{2} \). In ce caz are loc egalitatea?

Posted: Sat Jan 09, 2010 3:51 pm
by Robert_Samoilescu95
a) Obtinem usor \( 2(a^2 +b^2) \geq (a+b)^2 \), extragem radacina patrata si folosim \( |A| \geq A \), de unde rezulta concluzia.
b) Sub primul radical obtinem patratul unui binom +4, iar sub al doilea patratul unui trinom +64. Folosim a) si xy+yz+xz = 15 de unde rezulta concluzia. Egalitate x=y=z=+ sau -√5