Page 1 of 1

O inegalitate a lui S. Radulescu & I.V. Maftei.

Posted: Fri Sep 18, 2009 6:10 pm
by Virgil Nicula
Daca \( ABC \) este un triunghi ascutitunghic, atunci \( \sum{\sqrt{\frac{b+c-a}{a}}}\ge 3. \)

Sorin mi-a spus ca se face cu metoda multiplicatorilor Lagrange la care am ramas "masca" si de aceea am propus-o. Eu am facut-o cu multiplicatori Lagrange. Insa sunt convins ca exista si o metoda elementara.

Posted: Sun Jan 31, 2010 7:45 pm
by Mateescu Constantin
Mai intai sa demonstram ca intr-un triunghi ascutitunghic \( ABC \) avem inegalitatea:

\( \overline{\underline{\left\|\ \sin\frac A2\ +\ \sin\frac B2\ +\ \sin\frac C2\ \ge\ \frac 54\ +\ \frac r{2R}\ \right\|}} \) (Tudorel Lupu, G.M. 11/2007)

Dem. Aplicam inegalitatea lui Popoviciu functiei \( \underline{\cos} \) , care pe intervalul \( \left\(0\ ,\ \frac{\pi}{2}\right\) \) este concava :

\( \cos A+\cos B+\cos C+3\cos\frac{A+B+C}{3}\ \le\ 2\cos\frac{A+B}{2}+2\cos\frac{B+C}{2}+2\cos\frac{C+A}{2} \)

\( \Longleftrightarrow\ 1+\frac rR+\frac 32\ \le\ 2\sum\ \sin\frac A2\
\Longleftrightarrow\ \overline{\underline{\left\|\ \sin\frac A2\ +\ \sin\frac B2\ +\ \sin\frac C2\ \ge\ \frac 54\ +\ \frac r{2R}\ \right\|}} \)


===================================================================================

Acum, revenim la inegalitatea initiala pe care o ridicam la patrat : \( \left\(\sum\ \sqrt{\frac{b+c-a}a}\right\)^2\ \ge\ 9\ \Longleftrightarrow \)

\( \sum\ \frac{b+c-a}a+2\sum\sqrt{\frac{(c+a-b)(a+b-c)}{bc}}\ \ge\ 9\ \Longleftrightarrow\ \sum\ \left\(\frac ab+\frac ba\right)-3+2\sum\sqrt{\frac{4(p-b)(p-c)}{bc}}\ \ge\ 9 \)

\( \Longleftrightarrow\ \sum\ \frac{a^2+b^2}{ab}+4\sum\ \sin\frac A2\ \ge\ 12 \) . Tinand cont de inegalitatea demonstrata mai sus e suficient sa aratam ca

\( \sum\ \frac{a^2+b^2}{ab}+4\left\(\frac 54+\frac r{2R}\right\)\ \ge\ 12\ \Longleftrightarrow\ \sum\ \frac{c^2+2ab\cos C}{ab}+\frac{2r}{R}\ \ge\ 7\ \Longleftrightarrow\ \sum\ \frac{c^2}{ab}+2\sum\ \cos C+\frac {2r}R\ \ge\ 7 \)

\( \Longleftrightarrow\ \frac{a^3+b^3+c^3}{abc}+2+\frac{2r}{R}+\frac{2r}{R}\ \ge\ 7\ \Longleftrightarrow\ \frac{2p(p^2-6Rr-3r^2)}{4Rrp}+\frac{4r}{R}\ \ge\ 5\ \Longleftrightarrow\ \frac{p^2-6Rr-3r^2}{2Rr}+\frac{4r}{R}\ \ge\ 5 \)

\( \Longleftrightarrow\ \frac{p^2-6Rr-3r^2+8r^2}{2Rr}\ \ge\ 5\ \Longleftrightarrow\ p^2+5r^2\ \ge\ 16Rr\ \ \ \) O.K.

Re: O inegalitate a lui S. Radulescu & I.V. Maftei.

Posted: Mon Feb 01, 2010 10:23 pm
by radu tanse
Domnule profesor Nicula, va sugerez sa deschideti cartea "INEGALITATI. Idei si metode" de Mihai Onucu Drambe, la pagina 232, inegalitatea 119, apoi sa deconditionati conditia triunghi ascutit unghic in substitutiile a=y+z, b=z+x, c=x+y. O sa descoperiti o demonstratie elementara!

Multa sanatate!

:wink: beat`it :lol:

Posted: Tue Feb 02, 2010 6:41 pm
by Virgil Nicula
Multumesc pentru informatie. Frumoasa demonstratia lui M.C. !

Re: O inegalitate a lui S. Radulescu & I.V. Maftei.

Posted: Thu Feb 04, 2010 11:56 pm
by Cezar Lupu
radu tanse wrote:Domnule profesor Nicula, va sugerez sa deschideti cartea "INEGALITATI. Idei si metode" de Mihai Onucu Drambe, la pagina 232, inegalitatea 119, apoi sa deconditionati conditia triunghi ascutit unghic in substitutiile a=y+z, b=z+x, c=x+y. O sa descoperiti o demonstratie elementara!

Multa sanatate!

:wink: beat`it :lol:
Unde esti?????? :lol:

Posted: Fri Feb 05, 2010 12:02 am
by Virgil Nicula
Eu zic sa nu-l ambitionezi prea tare ca poate o face. La cat "umor" are ar fi in stare si ce ne facem ?! :(