Page 1 of 1
Inegalitate cunoscuta
Posted: Fri Jul 03, 2009 12:35 pm
by Claudiu Mindrila
\( a,\ b,\ c,\ d\ge0\ \Longrightarrow\left(a+b+c+d\right)^{3}\ge16\left(abc+bcd+cda+dab\right) \)
Posted: Fri Jul 03, 2009 1:52 pm
by Marius Mainea
Ridicand la cub \( LHS=\frac{{\sum_{sym}a^3}}{6}+\frac{3}{2}\sum_{sym}a^2b+\sum_{sym}abc \)
Avand in vedere ca \( RHS=\frac{16}{6}\sum_{sym}abc \) ,
concluzia rezulta din Inegalitatea lui Muirhead.
Posted: Sun Jul 05, 2009 10:47 am
by maxim bogdan
Din inegalitatea lui Maclaurin avem:
\( \frac{a+b+c+d}{4}\geq \sqrt[3]{\frac{abc+bcd+cda+dab}{4}} \), de unde rezulta concluzia.