Page 1 of 1

Doua siruri definite recurent

Posted: Sat Feb 14, 2009 4:33 pm
by Filip Chindea
Fie \( (x_n)_n,\ (y_n)_n \) doua siruri reale, satisfacand relatiile \( x_{n+1} = x_n + 3/y_n \) si \( y_{n+1} = y_n + 1/(12x_n) \), pentru orice \( n \) natural, \( x_0, y_0 > 0 \) oarecare.
Sa se arate ca \( \max\{x_{2008},y_{2008}\} > \sqrt{2009} \).

[ OLM 2008 Bucuresti, Problema 3 ]

Posted: Tue Feb 17, 2009 6:33 pm
by mumble
Vom construi sirul \( (z_n)_{n\geq 0},z_n:=x_{n}y_{n}, \forall n\in\mathbb{N} \). Ipoteza ne spune ca \( z_{n+1}=z_n+\frac{1}{4z_n}+\frac{37}{12}. \) E clar ca \( x_n,y_n,z_n>0, \) astfel ca obtinem \( z_{n+1}>z_n+\frac{37}{12}, \forall n\in\mathbb{N} \) si prin urmare \( z_{2008}>z_0+2008\cdot\frac{37}{12}>2009, \) de unde \( \max\{x_{2008},y_{2008}\}>\sqrt{2009}. \)