Galati 2008
Posted: Sat Nov 29, 2008 2:32 pm
Sa se arate ca oricare ar fi numerele reale \( a,b,c \in(0;1) \) , avem inegalitatea :
\( \sqrt{\frac{ab}{ab+c\cdot(a+b+c)}}+\sqrt{\frac{bc}{bc+a\cdot(a+b+c)}}+\sqrt{\frac{ca}{ca+b\cdot(a+b+c)}}\le \frac{3}{2} \)
\( \sqrt{\frac{ab}{ab+c\cdot(a+b+c)}}+\sqrt{\frac{bc}{bc+a\cdot(a+b+c)}}+\sqrt{\frac{ca}{ca+b\cdot(a+b+c)}}\le \frac{3}{2} \)