Page 1 of 1

Inegalitate trigonometrica non-standard

Posted: Sat Oct 25, 2008 8:27 pm
by Filip Chindea
Fie \( \Gamma \) semicercul inchis avand centrul in origine si raza unitate, situat in semiplanul \( \{z \in \mathbb{C} \ : \ \mathrm{Im} z \ge 0\} \) si \( A_1, ..., A_{2n} \in \Gamma \).
Presupunem ca proiectia vectorului \( \mathbf{v} := \vec{OA_1} + \cdots + \vec{OA_{2n}} \) pe axa reala este un numar intreg impar.
Aratati ca proiectia lui \( \mathbf{v} \) pe axa imaginara este, in modul, mai mare sau egala cu \( 1 \).

[ DMO 2008, Problema 3 ]

Posted: Mon Nov 17, 2008 10:17 pm
by Filip Chindea
Indicatie. Incercati sa "algebrizati" problema si sa faceti niste notatii convenabile.
Iese analizand doua cazuri.

Posted: Mon Nov 17, 2008 11:56 pm
by Beniamin Bogosel
Avem \( \vec{OA_i}(x_i,y_i) \) cu \( x_i^2+y_i^2=1 \). Am ales semiplanul astfe incat \( y_i \) sunt pozitivi. Atunci \( \sum y_i=\sum \sqrt{1-x_i^2}\geq \sum (1-x_i^2)\geq \sum(1-|x_i|)=2n+\sum_{x_i<0}x_i -\sum_{x_i\geq 0}x_i=2n-A-B \).

Unde am notat cu \( A,B \) suma modulelor numerelor negative, respectiv pozitive. Atunci \( B-A=2k+1 \).
Caz 1 \( B> A\Rightarrow 2k+1>0 \Rightarrow 2n-A-B=2n+2k+1-2B\geq 1+2n-2A \geq 1 \)
Caz2 \( A<B \Rightarrow 2k+1<0 \Rightarrow 2n-A-B=2n-(2k+1)-2A\geq 1+2n-2A \geq 1 \).

;)

Posted: Tue Nov 18, 2008 10:11 pm
by Filip Chindea
\( \sum (1 - x_j^2) \ge \sum (1 - x_j) \)
Ce te faci daca un \( x_j = -1 \) ?