Page 1 of 1

f:R->R^2

Posted: Sat Oct 25, 2008 1:02 pm
by Kakeyaconjecture
Fie \( f:\mathbb{R}\to \mathbb{R}^2 \) o functie continua pentru care avem \( f(x)=f(x+1) \forall x \) si fie \( t \in [0,1/4] \). Sa se arate ca exista \( $x$ \) astfel incat vectorul \( $\vec{f(x-t)f(x+t)}$ \) sa fie perpendicular pe vectorul \( \vec{f(x)f(x+1/2)} \).

Posted: Mon Oct 27, 2008 7:37 pm
by Liviu Paunescu
Functia aia este un drum in \( \mathbb{R}^2 \). Trebuie gasit un \( x \) astfel incat:

\( <f(x)-f(x+1/2),f(x-t)-f(x+t)>=0 \) (produs scalar)

Existenta rezulta fiindca \( \int_{x=0}^1<f(x)-f(x+1/2),f(x-t)-f(x+t)>=0 \) datorita egalitatilor:

\( \int_{x=0}^1<f(x),f(x-t)>=\int_{x=0}^1<f(x+t),f(x)>=\int_{x=0}^1<f(x),f(x+t)> \) si

\( \int_{x=0}^1<f(x+1/2),f(x-t)>=\int_{x=0}^1<f(x+1/2+1/2+t),f(x-t+1/2+t)>= \int_{x=0}^1<f(x+t),f(x+1/2)> \)

Posted: Tue Oct 28, 2008 1:28 pm
by Kakeyaconjecture
De unde vine relatia:
\( \int_{x=0}^1<f(x),f(x-t)>=\int_{x=0}^1<f(x+t),f(x)>=\int_{x=0}^1<f(x),f(x+t)> \)?

Posted: Wed Oct 29, 2008 8:54 pm
by Liviu Paunescu
Pai din periodicitatea lui \( f \) si o mica schimbare de variabila.

\( \int_{x=0}^1<f(x-t),f(x)>=\int_{x=-t}^{1-t}<f(x),f(x+t)> \), asta a fost schimbarea de variabila.

\( \int_{x=-t}^{1-t}<f(x),f(x+t)>=\int_{x=0}^{1-t}<f(x),f(x+t)>+ \int_{x=-t}^{0}<f(x),f(x+t)>= \)
\( =\int_{x=0}^{1-t}<f(x),f(x+t)>+ \int_{x=1-t}^{1}<f(x),f(x+t)>=\int_{x=0}^{1}<f(x),f(x+t)> \) si asta a fost periodicitatea.