Page 1 of 1
Congruenta clasica
Posted: Tue Sep 23, 2008 3:25 pm
by Vlad Matei
Fie \( p\equiv 3(mod \hspace{1mm} 4) \).Demonstrati ca \( \displaystyle \prod_{k=1}^{p}(k^{2}+1) \equiv 4 (mod \hspace{1mm} p) \).
Re: Congruenta clasica
Posted: Tue Sep 23, 2008 8:53 pm
by Filip Chindea
Vlad Matei wrote:Fie \( p\equiv 3(mod \hspace{1mm} 4) \).Demonstrati ca \( \displaystyle \prod_{k=1}^{p}(k^{2}+1) \equiv 4 (mod \hspace{1mm} p) \).
Fie
\( p \) prim cu
\( p \equiv 3 \pmod{4} \). Deci polinomul
\( f = X^2 + 1 \) este ireductibil in
\( \mathbb{Z}_p[X] \) si fie
\( K = \mathbb{Z}_p[X]/(f) \).
Utilizand faptul binecunoscut ca
\( \prod_{k \in \mathbb{Z}_p^{\ast}} (X - k) = X^{p - 1} - 1 \) (in
\( \mathbb{Z}_p[X] \)), rezulta ca in
\( K \)
\( \prod_{k \in \mathbb{Z}_p} (k^2 + 1) = \prod_{k \in \mathbb{Z}_p} (k^2 - X^2) = (-1)^{p+1} \left( \prod_{k \in \mathbb{Z}_p^{\ast}} (X - k) \right)^2 = 4 \), si totul e clar.
PS. As vrea sa vad si eu solutia aia
clasica (unde? suntem la nivel de IMO aici, iar astfel de exercitii nu prea ar fi adecvate). Cu exceptia "traducerii" rezolvarii de mai sus, desigur.