Inegalitate SHL
Posted: Wed Aug 20, 2008 10:00 pm
Se dau numerele reale \( x,y,z \geq 0 \) . Sa se demonstreze inegalitatea
\( \frac{x}{y+z} + \frac{y}{z+x} + \frac{z}{x+y} \geq \sqrt{2} \cdot \sqrt{2- \frac{7xyz}{(x+y)(y+z)(z+x)}} \)
Cand are loc egalitatea?
Andrei Ciupan
\( \frac{x}{y+z} + \frac{y}{z+x} + \frac{z}{x+y} \geq \sqrt{2} \cdot \sqrt{2- \frac{7xyz}{(x+y)(y+z)(z+x)}} \)
Cand are loc egalitatea?
Andrei Ciupan