Page 1 of 1

Subiectul 1, Concursul centrelor de excelenta 2008

Posted: Sat May 31, 2008 10:07 pm
by Bogdan Cebere
Fiind date matricele \( A,B \in M_3(R) \), sa se arate relatia: \( |\det (A+iB)|^2=\det (A^2+B^2)-\tr ((BA-AB)^*(A^2+B^2)). \)

Posted: Sat Jun 07, 2008 1:42 pm
by Marius Mainea
Folosim relatia: \( det(A+xB)=detBx^3+tr(AB^\ast)x^2+mx+detA \)

pentru \( A\mapsto(A^2+B^2)\ \ \ B\mapsto i(BA-AB) \)