Page 1 of 1

Serie

Posted: Wed May 14, 2008 7:00 pm
by o.m.
Let M be the matrix

M=
(0 0 -1)
(0 1 1)
(1 1 1)

and the sequence

\( v_{n}=\cos(\pi \tr(M^n)) \)

1. Study the convergence of the series
\( w_n=\sum_{k=0}^{n}v_k \).

2. Is it bounded the sequence
\( y_n=\sum_{k=0}^{n}\cos(\pi a^k) \),
where \( a \) is the unique eigenvalue of \( M \)?

(From an exam this morning.)

Posted: Wed May 14, 2008 7:42 pm
by Beniamin Bogosel
1) (nice exam :) )

Polinomul caracteristic al matricii este \( x^3-2x^2+x-1 \). Este cunoscuta relatia \( s_n=\tr(M^n)=x_1^n+x_2^n+x_3^n \), unde \( x_i \) sunt valorile proprii ale lui \( M \).

Folosind faptul ca valorile proprii verifica polinomul caracteristic obtinem reatia de recurenta: \( s_{n+3}=2s_{n+2}-s_{n+1}+s_n,\ \forall n \geq 0 \), cu \( s_0=3, s_1=s_2=2,\ s_3=5 \). Deoarece recurenta este cu coeficienti intregi si are primii trei termeni intregi, toate numerele \( s_k \) sunt intregi. Deoarece noi avem nevoie de informatii doar asupra paritatii lui \( s_k \) pentru ca \( \cos(n\pi)=(-1)^n \), vom reduce recurenta modulo 2 si obtinem ca \( s_{k+3}=s_{k+1}-s_k \). Astfel, scriind modulo 2 avem
\( s_0=1\\
s_1=0\\
s_2=0\\
s_3=1\\
s_4=0\\
s_5=1\\
s_6=1\\
s_7=1... \)

De fapt \( s_{k+7}=s_{k+5}-s_{k+4}=s_{k+3}-s_{k+1}=s_k \). Deci recurenta e periodica de perioada 7 modulo 2.
Atunci \( w_{7}=-1+1+1-1+1-1-1=-1 \) si \( w_{7n}=-n\to -\infty \). Deci seria nu este convergenta.

Posted: Wed May 14, 2008 7:45 pm
by Beniamin Bogosel
De fapt, cred ca aceasta serie nu poate fi convergenta, pentru ca \( \tr(A^{n})\in \mathbb{Z} \) si astfel \( v_{n}\in \{-1,1\}\ \forall n \in \mathbb{N} \), si astfel \( v_{n} \) nu tinde la 0.

Posted: Thu May 15, 2008 4:43 pm
by o.m.
Beniamin you got the right idea
-------------------------------------

Sorry there is small mistake a(3,3) is -1 not 1

the matrix is

M=
(0 0 -1)
(0 1 1)
(1 1 -1)