Page 1 of 1

O problema interesanta cu radical

Posted: Tue May 13, 2008 9:43 pm
by Sabin Salajan
Fie n un numar natural. Daca \( 2+2\sqrt{28n^2+1} \) e natural, atunci este patrat perfect.

Problem-Solving Strategies, Arthur Engel

Posted: Wed Jun 24, 2009 10:35 am
by salazar
Din conditiile problemei rezulta ca \( \sqrt{28n^2+1}\in \mathbb{N} \), adica:
\( \sqrt{28n^2+1}=k, k\in\mathbb{N} \)
\( 28n^2+1=k^2 \)
\( k^2-28n^2=1 \)
\( (k-2\sqrt{7}n)(k+2\sqrt{7}n)=1\Longrightarrow k=1,n=0 \), de unde \( 2+2\sqrt{28n^2+1}=2+2\cdot 1=4 \) care este patrat perfect.

Posted: Wed Jun 24, 2009 11:29 am
by mihai++
Nu prea e complet ce ai facut tu acolo. Si doua numere irationale inmultite pot da 1.

Posted: Wed Jun 24, 2009 11:48 am
by Dragos Fratila
salazar wrote: \( (k-2\sqrt{7}n)(k+2\sqrt{7}n)=1\Longrightarrow k=1,n=0 \)
Aici e gresit: incearca \( n=24, k=127 \).

Posted: Wed Jun 24, 2009 12:44 pm
by Mateescu Constantin
\( 2+2\sqrt{28n^2+1}=m,\ m\in\mathbb{N}\ \Longrightarrow 4(28n^2+1)=m^2-4m+4 \)
\( \Longrightarrow m=2k,\ k\in\mathbb{N}\ \Longrightarrow 28n^2+1=k^2-2k+1 \)
\( \Longleftrightarrow 28n^2=k^2-2k\ \Longrightarrow k=2q,\ q\in\mathbb{N} \)
\( \Longrightarrow 28n^2=4q^2-4q\ \Longleftrightarrow 7n^2=q(q-1) \). Numerele \( q \) si \( q-1 \) sunt prime intre ele.

Cazul 1: \( q=7x^2,\ q-1=y^2\ \Longrightarrow 7x^2-y^2=1 \). Acest caz nu poate aparea, deoarece \( y^2\equiv -1(mod 7) \).

Cazul 2: \( q=x^2,\ q-1=y^2 \). In acest caz \( m=2k=4q=4x^2=(2x)^2 \), ceea ce rezolva problema.

Posted: Wed Jun 24, 2009 1:03 pm
by Dragos Fratila
Se rezolva ecuatia Pell \( x^2-7y^2=1 \). Solutia fundamentala este \( x=8, y=3 \).

Ne intereseaza solutiile cu \( y \) par fiindca vrem \( k^2-7(2n)^2 = 1 \).

Acestea se obtin astfel: \( k+2n\sqrt{7} = (8+3\sqrt{7})^{2a} \) (puterea trebuie sa fie para pentru a-l obtine pe \( y \) par)

Avem \( m = 2+2\sqrt{28n^2+1} = 2+2k = 2+(8+3\sqrt(7))^{2a}+(8-3\sqrt{7})^{2a} = ((8+3\sqrt 7)^a+(8-3\sqrt 7)^a)^2 \) iar ce e inauntrul parantezei mari este numar natural, deci \( m \) este patrat perfect.