Page 1 of 1

Clasica

Posted: Sun May 11, 2008 10:12 pm
by Filip Chindea
Fie \( r \in \mathbb{Q} \) cu \( a := 2 \cos(\pi r) \in \mathbb{Q} \). Aratati ca \( a \in \mathbb{Z} \).

Posted: Sun Jul 06, 2008 8:46 pm
by Filip Chindea
Au trecut doua luni si inca nu a aparut solutia simpla pe care o asteptam (desi am mai vazut post-uri).

Mai intai, pornind de la identitatea \( \cos (n+1)\varphi + \cos (n-1)\varphi = 2\cos \varphi \cos n\varphi \), se arata ca daca definim

\( \left\{ \begin{array}{c} T_0 := 1, T_1 := t, \\ T_{n+2} := 2t T_{n+1} - T_n, \forall n \ge 0 \end{array} \right. \),

inductiv \( T_n \in \mathbb{Z}[t] \) au proprietatea ca \( T_n(\cos(\varphi)) = \cos(n\varphi) \) si se numesc (primele) polinoame Cebasev.

Definim acum \( P_n(t) := 2T_n(t/2) \). Se arata inductiv ca si \( P_n \in \mathbb{Z}[t] \) si, in plus, este monic.

Solutia problemei. Fie \( r = m/n \), \( n \in \mathbb{N}^{\ast} \) si \( m \in \mathbb{Z} \). Atunci \( P_n(a) = 2T_n(\cos(\pi r)) = \pm 2 \). Deci \( a \) este radacina a lui \( P_n \mp 2 \) si acum totul rezulta din faptul ca \( P_n \) este monic. \( \qed \)

Posted: Wed Jul 09, 2008 8:21 pm
by Cezar Lupu
Solutie.

Consideram numarul complex \( x=cos r\pi+i\sin r\pi \). Daca notam cu \( r=m/n \) cu \( m, n \) numere intregi prime intre ele, atunci numarul complex \( x \) verifica ecuatia \( x^{2n}-1=0 \), deci este radacina de ordin \( 2n \) a ecuatiei, deci este intreg algebric.

Se verifica usor de tot, ca \( \overline{x} \) (conjugatul complex al lui \( x \)) este intreg algebric.

Prin urmare avem ca si \( x+\overline{x}=2\cos r\pi \) este intreg algebric (operatii cu intregi algebrici). Conform cu faptul ca orice intreg algebric rational este numar intreg, rezulta ca \( 2\cos r\pi\in\mathbb{Q} \), dar mai avem ca \( a=2\cos r\pi\in [-2, 2] \), dar cum \( a\in\mathbb{Q} \), rezulta ca \( a\in\{-1, 0, 1\} \), deci \( a\in\mathbb{Z} \). \( \qed \)