Page 1 of 1

Matrice cu determinant pozitiv

Posted: Sat Mar 22, 2008 1:33 pm
by bogdanl_yex
Fie matricea \( A \in M_{n}(R),\ n \geq 1 \) si \( A^{*} \) adjuncta sa. Sa se demonstreze echivalenta afirmatiilor:
a) \( \det A\geq 0 \)
b) \( \det (A+xA^{*})\geq 0 , \forall x\geq 0 \).

GM 1999

Posted: Sat Mar 22, 2008 2:14 pm
by Marius Dragoi
"\( \Rightarrow \)" \( \det (A+xA{*}) \geq 0 \forall x \geq 0 \) , atunci pentru \( x=0 \) afirmatia ramane adevarata \( \Rightarrow \det (A+0A^{*}) =\det A \geq 0 \).
"\( \Leftarrow \)" \( \det A \geq 0 \)
Cum \( AA^{*}=(\det A)I_n \), atunci avem
\( \det (A+xA^{*}) \geq 0 \Leftrightarrow \det A \det(A+xA^{*}) \geq 0 \Leftrightarrow \det(A^2+x ({\det A})I_n) \geq 0 \).
Notez \( x({\det A})=t^2 \), unde \( t \geq 0 \).
Cum \( x({\det A}) \geq 0 \), atunci avem \( \det (A+xA^{*}) \geq 0 \Leftrightarrow \det (A^2+({t I_n})^2) \geq 0 \) adevarat. :wink:

Posted: Sat Mar 22, 2008 2:25 pm
by Beniamin Bogosel
\( \det (A+xA^{*}) \geq 0 \Leftrightarrow \det A \det(A+xA^{*}) \geq 0 \)
Asta e adevarat numai daca \( \det(A) \neq 0 \).
Ar trebui sa tratezi cazul asta separat

Si ca sa nu mai fie asa de banala implicatia cealalta incearca sa demonstrezi ca

\( \det(A+xA^*)\geq 0 \forall x>0 \) implica a)

Re: determinant pozitiv....

Posted: Sat Mar 22, 2008 5:49 pm
by Cezar Lupu
bogdanl_yex wrote:Fie matricea \( A \in M_{n}(R),\ n \geq 1 \) si \( A^{*} \) adjuncta sa. Sa se demonstreze echivalenta afirmatiilor:
a) \( \det A\geq 0 \)
b) \( \det (A+xA^{*})\geq 0 , \forall x\geq 0 \)

GM 1999
Solutie.

b)=>a) Se face asa: punem \( x=0 \) si avem \( \det(A)\geq 0 \).

a)=>b) Aici vom trata doua cazuri:

1. Daca \( A\in GL_{n}(\mathbb{R}) \), atunci, cum orice matrice \( A\in M_{n}(\mathbb{C}) \) verifica egalitatea \( A\cdot A^{*}=\det(A)\cdot I_{n} \), avem \( A^{*}=A^{-1}\cdot\det(A) \) de unde concluzia.

2. Daca \( A \) este singulara (adica cu \( \det(A)=0 \), atunci consideram matricea \( A\prime=A+\lambda I_{n} \). Cum polinomul \( \det(A+\lambda I_{n}) \) are gradul cel mult \( n \), exista o infinitate de valori pentru care matricea \( A^{\prime} \) este inversabila, deci o infinitate de valori pentru care are loc relatia \( A\prime\cdot A\prime^{*}=\det(A\prime)\cdot I_{n} \). Pe de alta parte, cum polinomul \( A\prime\cdot A\prime^{*}=\det(A\prime^{*})\cdot I_{n} \) are si el grad finit mai mic ca \( n^2 \) rezulta ca \( A\prime\cdot A\prime^{*}=\det(A\prime)\cdot I_{n}\forall\lambda\in\mathbb{R} \). Facand \( \lambda=0 \), vom avea ca\( A\cdot A=A^{*}\det(A)\cdot I_{n} \).
Astfel, vom obtine ca
\( \det(A)\cdot\det(A+xA^{*})=\det(A^{2}+xAA^{*})= \)
\( \det(A^{2}+x\det(A)\cdot I_{n})=\det\left((A^{2}+\left(\sqrt{x\det(A)}\right)^{2}\cdot I_{n}\right)\geq 0 \),
pentru ca este cunoscut faptul ca pentru orice doua matrice \( X, Y \), sa zicem, de ordinul \( n \) si care comuta, are loc inegalitatea \( \det(X^2+Y^2)\geq 0 \). \( \qed \)