Testare pentru capitolul "Siruri"
Posted: Sat Mar 15, 2008 3:54 pm
Bibliografie.
[1] Acad. Miron NICOLESCU: Analiza Matematica vol. I, Ed. Didactica si Pedagogica, Bucuresti, 1965.
[2] BATINETU, D.M.: Siruri, Editura ALBATROS, 1979, Bucuresti.
[3] CORDUNEANU, A.: Culegere de probleme de matematica, Editura JUNIMEA, Iasi, 1972.
[4] IAGLOM, A.M. si I.M.: Probleme neelementare tratate elementar, Editura Tehnica, Bucuresti, 1985
[5] MARKUSEVICI, A.I.: Siruri recurente, Editura Tehnica, Bucuresti, 1985
[6] NICULA, Virgil: Analiza Matematica pentru clasa a XI - a, Ed. TEORA, Bucuresti, 1999.
[7] SIRETCHI, Gh.: Calcul diferential si integral vol. I, Editura Stiintifica si Enciclopedica, Bucuresti, 1985.
[8] *********: GAZETA MATEMATICA Seria B, Bucuresti, 1980-2008.
[9] *********: AICI !
Testul I (tehnica) - 26 exercitii.
I. Sa se determine termenul general \( a_n=f(n)\ ,\ n\in\mathbb N^* \) pentru sirurile recurente :
\( \clubsuit\ \ a_1=1\ ;\ a_{n+1}=\frac {a_n}{1+a_n}\ ,\ n\in\mathbb N^*\ . \)
\( \clubsuit\ \ a_1=1\ ,\ a_2=2\ ;\ a_{n+2}=2a_{n+1}-a_n\ ,\ n\in\mathbb N^*\ . \)
\( \clubsuit\ \ a_1=1\ ;\ a_{n+1}=1-\frac {1}{4a_n}\ ,\ n\in\mathbb N^*\ . \)
\( \clubsuit\ \ a_1=1\ ;\ (n+1)a^2_{n+1}=a^2_n+1\ ,\ \mathbb N^*\ . \)
\( \clubsuit\ \ a_1=0\ ;\ a_{n+1}=\frac {1}{n(n+1)}\cdot\sum_{k=1}^nka_k-\frac 12\ ,\ n\in\mathbb N^*\ . \)
\( \clubsuit\ \ a_1=1\ ;\ a_{n+1}=1+\sum_{k=1}^nka_k\ ,\ n\in\mathbb N^*\ . \)
\( \clubsuit\ \ a_1=0\ ;\ a_{n+1}=a_n\sqrt 2+\sqrt {2+a_n^2}\ ,\ n\in\mathbb N^*\ . \)
II. Sa se determine limitele (daca exista !) urmatoarelor siruri:
II.1 (3 ex). \( (0,99)^n\cdot n^p\cdot\sin n\ \ \ ;\ \ \ n^p\cdot(-1)^n\cdot\left(\tan\ \frac {\pi}{4n}\right)^n\ \ \ ;\ \ \ \sin(n!\pi x) \) , unde \( p\in\mathbb{N}^* \), \( x\in\mathbb{Q} \).
II.2 (6 ex). \( \sin^r\left(\pi\sqrt[p]{n^p+an^{p-1}+1}\right)\ \ \ ;\ \ \left\{\sqrt[p]{n^p+an^{p-1}+1}\right\}\ ,\ \frac ap\ \not\in\ \mathbb Z\ \ \ ;\ \ \ \frac 1n\cdot [na]\ \ \ ;\ \ \ n\left[\frac 1n\cdot a\right] \),
\( \left(\frac {\ln\ n!}{n\ln\ n}\right)^{\ln\ n} \), \( \left(\sqrt[p]{1+\frac 1n}+\sqrt[p]{1-\frac 1n}-2\right )\cdot n^2 \), unde \( r\in\mathbb{N}^* \), \( p\in \mathbb N \), \( p\ge 2 \), \( a\in\mathbb R \).
II.3 (4 ex). \( \sum_{k=1}^n\frac {k}{2^k}\ \ \ ;\ \ \ \frac {2^n}{n}\cdot\left(2-\sum_{k=1}^n\frac {k}{2^k}\right)\ \ \ ;\ \ \ \frac {n}{2^n}\cdot\sum_{k=1}^n\frac {2^k}{k}\ \ \ ;\ \ \ \sum_{k=1}^n\frac {\sin kx}{2^k} \).
II.4 (2 ex). \( (n+1)!\cdot\left(\sum_{k=1}^n\frac {k^3+3k^2-k-4}{(k+3)!}+\frac 12\right)\ \ \ ;\ \ \ \frac {1}{\ln n}\cdot\left(\sum_{k=1}^n\sqrt[n] k-n\right) \).
II.5 (3 ex). \( 0<a\ne 1\ \ :\ \ F_n\equiv\sum_{k=0}^n\frac {1}{k!}\ \ \ ;\ \ \ n\cdot\left(a^{F_n}-a\right)\ \ \ ;\ \ \ \left(1+e-F_n\right)^{n!}\ \ \ ;\ \ \ \left(1+e-F_n\right)^{(n+1)!} \).
II.6 (3 ex). \( \frac {\sqrt {n!}}{\prod_{k=1}^n\left(2+\sqrt k)}\ \ \ ;\ \ \ \prod_{k=1}^n\left(1+\frac {x-1}{k}\right) \), \( n\cdot\left(\frac {1}{n^{p+1}}\sum_{k=1}^nk^p-\frac {1}{p+1}\right) \) , unde \( p\in \mathbb{N}^* \), \( x>0 \).
II.7. \( \frac {1}{\ln n}\cdot\sum_{k=1}^n\ln\frac {a+y_k}{b+y_k} \), unde \( a>0\ ,\ b>0\ ,\ a\ne b \) si \( y_n\nearrow \infty\ ,\ y_{n+1}-y_n\rightarrow l\in\mathbb R \).
II.8. Sa se determine \( a \), \( b \) reale astfel incat:
II.8.1. \( \lim_{n\to\infty}\ \left(\sqrt[3]{n^3+3n^2+n+1}+2\sqrt[5]{n^5+10n^4+3n+1}+na\right)=b \).
II.8.2. \( \lim_{n\to\infty}\ n\cdot\left(\ \sqrt{\frac {an+1}{n+3}}\ -\ b\ \right)=b-2a \).
II.8.3. Sirurile \( a_n=\ln (n+1)+a\cdot\ln (n+2)+b\cdot\ln (n+3) \) si \( b_n=\sum_{k=1}^n a_k \) sunt convergente.
II.8.4. \( \lim_{n\to\infty}\ n\cdot\left(\sqrt {n^2+n+1}+\sqrt {n^2-n+1}+an\right)=b \) .
(*) III. Pentru \( x\in (0,1)\ ,\ p\in \mathbb N \) consideram sirul "suma" \( \overline {\underline {\left\|\ a_n(p,x)=\sum_{k=1}^nk^px^k\ ,\ n\in\mathbb N^*\ \right\|}} \) . Sa se arate:
III.1. Pentru orice \( p\in \mathbb N \) sirul \( a_n(p,x) \) este convergent, adica \( a_n(p,x)\rightarrow L_p\in\mathbb R \).
III.2. \( L_0=\frac {x}{1-x} \) si pentru orice \( p\in \mathbb N^* \) exista recurenta \( L_p=L_0\cdot\left(1+\sum_{k=0}^{p-1}C_p^kL_k\right) \).
Gata ! Succes, Faust, Svejk, Posabogdan & Co ! Atentie !
1. Un test se constituie in tema pentru doua saptamani si se incadreaza in "Preolympiad section".
2. Va rog sa enuntati teoremele si limitele remarcabile pe care le folositi. Daca folositi niste rezultate
care nu apartin manualului, va rog sa le demonstrati sau sa dati un link care contine si demonstratia.
Exemplu. "... . Din teorema \( T_1 \) rezulta ... " ; la subsolul solutiei mentionati "\( \ T_1 \) : ... (demonstratie sau link) ... "
3. In general, sunt binevenite chiar mai multe solutii pentru acelasi exercitiu.
4. Imediat dupa ce se vor posta solutiile tuturor exercitiilor, voi edita urmatorul test.
[1] Acad. Miron NICOLESCU: Analiza Matematica vol. I, Ed. Didactica si Pedagogica, Bucuresti, 1965.
[2] BATINETU, D.M.: Siruri, Editura ALBATROS, 1979, Bucuresti.
[3] CORDUNEANU, A.: Culegere de probleme de matematica, Editura JUNIMEA, Iasi, 1972.
[4] IAGLOM, A.M. si I.M.: Probleme neelementare tratate elementar, Editura Tehnica, Bucuresti, 1985
[5] MARKUSEVICI, A.I.: Siruri recurente, Editura Tehnica, Bucuresti, 1985
[6] NICULA, Virgil: Analiza Matematica pentru clasa a XI - a, Ed. TEORA, Bucuresti, 1999.
[7] SIRETCHI, Gh.: Calcul diferential si integral vol. I, Editura Stiintifica si Enciclopedica, Bucuresti, 1985.
[8] *********: GAZETA MATEMATICA Seria B, Bucuresti, 1980-2008.
[9] *********: AICI !
Testul I (tehnica) - 26 exercitii.
I. Sa se determine termenul general \( a_n=f(n)\ ,\ n\in\mathbb N^* \) pentru sirurile recurente :
\( \clubsuit\ \ a_1=1\ ;\ a_{n+1}=\frac {a_n}{1+a_n}\ ,\ n\in\mathbb N^*\ . \)
\( \clubsuit\ \ a_1=1\ ,\ a_2=2\ ;\ a_{n+2}=2a_{n+1}-a_n\ ,\ n\in\mathbb N^*\ . \)
\( \clubsuit\ \ a_1=1\ ;\ a_{n+1}=1-\frac {1}{4a_n}\ ,\ n\in\mathbb N^*\ . \)
\( \clubsuit\ \ a_1=1\ ;\ (n+1)a^2_{n+1}=a^2_n+1\ ,\ \mathbb N^*\ . \)
\( \clubsuit\ \ a_1=0\ ;\ a_{n+1}=\frac {1}{n(n+1)}\cdot\sum_{k=1}^nka_k-\frac 12\ ,\ n\in\mathbb N^*\ . \)
\( \clubsuit\ \ a_1=1\ ;\ a_{n+1}=1+\sum_{k=1}^nka_k\ ,\ n\in\mathbb N^*\ . \)
\( \clubsuit\ \ a_1=0\ ;\ a_{n+1}=a_n\sqrt 2+\sqrt {2+a_n^2}\ ,\ n\in\mathbb N^*\ . \)
II. Sa se determine limitele (daca exista !) urmatoarelor siruri:
II.1 (3 ex). \( (0,99)^n\cdot n^p\cdot\sin n\ \ \ ;\ \ \ n^p\cdot(-1)^n\cdot\left(\tan\ \frac {\pi}{4n}\right)^n\ \ \ ;\ \ \ \sin(n!\pi x) \) , unde \( p\in\mathbb{N}^* \), \( x\in\mathbb{Q} \).
II.2 (6 ex). \( \sin^r\left(\pi\sqrt[p]{n^p+an^{p-1}+1}\right)\ \ \ ;\ \ \left\{\sqrt[p]{n^p+an^{p-1}+1}\right\}\ ,\ \frac ap\ \not\in\ \mathbb Z\ \ \ ;\ \ \ \frac 1n\cdot [na]\ \ \ ;\ \ \ n\left[\frac 1n\cdot a\right] \),
\( \left(\frac {\ln\ n!}{n\ln\ n}\right)^{\ln\ n} \), \( \left(\sqrt[p]{1+\frac 1n}+\sqrt[p]{1-\frac 1n}-2\right )\cdot n^2 \), unde \( r\in\mathbb{N}^* \), \( p\in \mathbb N \), \( p\ge 2 \), \( a\in\mathbb R \).
II.3 (4 ex). \( \sum_{k=1}^n\frac {k}{2^k}\ \ \ ;\ \ \ \frac {2^n}{n}\cdot\left(2-\sum_{k=1}^n\frac {k}{2^k}\right)\ \ \ ;\ \ \ \frac {n}{2^n}\cdot\sum_{k=1}^n\frac {2^k}{k}\ \ \ ;\ \ \ \sum_{k=1}^n\frac {\sin kx}{2^k} \).
II.4 (2 ex). \( (n+1)!\cdot\left(\sum_{k=1}^n\frac {k^3+3k^2-k-4}{(k+3)!}+\frac 12\right)\ \ \ ;\ \ \ \frac {1}{\ln n}\cdot\left(\sum_{k=1}^n\sqrt[n] k-n\right) \).
II.5 (3 ex). \( 0<a\ne 1\ \ :\ \ F_n\equiv\sum_{k=0}^n\frac {1}{k!}\ \ \ ;\ \ \ n\cdot\left(a^{F_n}-a\right)\ \ \ ;\ \ \ \left(1+e-F_n\right)^{n!}\ \ \ ;\ \ \ \left(1+e-F_n\right)^{(n+1)!} \).
II.6 (3 ex). \( \frac {\sqrt {n!}}{\prod_{k=1}^n\left(2+\sqrt k)}\ \ \ ;\ \ \ \prod_{k=1}^n\left(1+\frac {x-1}{k}\right) \), \( n\cdot\left(\frac {1}{n^{p+1}}\sum_{k=1}^nk^p-\frac {1}{p+1}\right) \) , unde \( p\in \mathbb{N}^* \), \( x>0 \).
II.7. \( \frac {1}{\ln n}\cdot\sum_{k=1}^n\ln\frac {a+y_k}{b+y_k} \), unde \( a>0\ ,\ b>0\ ,\ a\ne b \) si \( y_n\nearrow \infty\ ,\ y_{n+1}-y_n\rightarrow l\in\mathbb R \).
II.8. Sa se determine \( a \), \( b \) reale astfel incat:
II.8.1. \( \lim_{n\to\infty}\ \left(\sqrt[3]{n^3+3n^2+n+1}+2\sqrt[5]{n^5+10n^4+3n+1}+na\right)=b \).
II.8.2. \( \lim_{n\to\infty}\ n\cdot\left(\ \sqrt{\frac {an+1}{n+3}}\ -\ b\ \right)=b-2a \).
II.8.3. Sirurile \( a_n=\ln (n+1)+a\cdot\ln (n+2)+b\cdot\ln (n+3) \) si \( b_n=\sum_{k=1}^n a_k \) sunt convergente.
II.8.4. \( \lim_{n\to\infty}\ n\cdot\left(\sqrt {n^2+n+1}+\sqrt {n^2-n+1}+an\right)=b \) .
(*) III. Pentru \( x\in (0,1)\ ,\ p\in \mathbb N \) consideram sirul "suma" \( \overline {\underline {\left\|\ a_n(p,x)=\sum_{k=1}^nk^px^k\ ,\ n\in\mathbb N^*\ \right\|}} \) . Sa se arate:
III.1. Pentru orice \( p\in \mathbb N \) sirul \( a_n(p,x) \) este convergent, adica \( a_n(p,x)\rightarrow L_p\in\mathbb R \).
III.2. \( L_0=\frac {x}{1-x} \) si pentru orice \( p\in \mathbb N^* \) exista recurenta \( L_p=L_0\cdot\left(1+\sum_{k=0}^{p-1}C_p^kL_k\right) \).
Gata ! Succes, Faust, Svejk, Posabogdan & Co ! Atentie !
1. Un test se constituie in tema pentru doua saptamani si se incadreaza in "Preolympiad section".
2. Va rog sa enuntati teoremele si limitele remarcabile pe care le folositi. Daca folositi niste rezultate
care nu apartin manualului, va rog sa le demonstrati sau sa dati un link care contine si demonstratia.
Exemplu. "... . Din teorema \( T_1 \) rezulta ... " ; la subsolul solutiei mentionati "\( \ T_1 \) : ... (demonstratie sau link) ... "
3. In general, sunt binevenite chiar mai multe solutii pentru acelasi exercitiu.
4. Imediat dupa ce se vor posta solutiile tuturor exercitiilor, voi edita urmatorul test.