Page 1 of 1

Integrala - Admitere SNSB

Posted: Wed Mar 12, 2008 11:07 pm
by Diana Putan
Fie \( f:[0, 1] \to (0,\infty) \) o functie continua. Pentru \( \alpha>0 \), definim

\( F(\alpha) =\int^{1}_{0}{f(t)^{\alpha}dt}. \)

(a) Aratati ca \( F \) e derivabila pe (0,1).

(b) Calculati \( \lim_{\alpha\to0}{F(\alpha)^{\frac{1}{\alpha}}} \).

(c) Calculati \( \lim_{\alpha\to\infty}{F(\alpha)^{\frac{1}{\alpha}}} \).


Admitere SNSB, 2006

Posted: Tue Feb 10, 2009 9:12 pm
by m3adi3c