Ecuatie cu solutii depinzand de n parametri
Posted: Wed Mar 12, 2008 12:35 am
Consideram ecuatia:
\( x^n+a_{1}x^{n-1}+\ldots+a_{n-1}x+a_{n}=0. \)
Fie \( a_{1}^{0},\ldots,a_{n}^{0} \) numere reale pentru care ecuatia de mai sus are \( n \) radacini reale distincte. Demonstrati ca exista o vecinatate a punctului \( (a_{1}^{0},\ldots,a_{n}^{0}) \) in \( \mathbb{R}^n \) in care ecuatia de mai sus are \( n \) solutii \( x_{1}(a_{1},\ldots,a_{n}),\ldots,x_{n}(a_{1},\ldots,a_{n}) \) de clasa \( C^{\infty} \) in parametrii \( a_{1},\ldots,a_{n} \).
Admitere SNSB, 2002
\( x^n+a_{1}x^{n-1}+\ldots+a_{n-1}x+a_{n}=0. \)
Fie \( a_{1}^{0},\ldots,a_{n}^{0} \) numere reale pentru care ecuatia de mai sus are \( n \) radacini reale distincte. Demonstrati ca exista o vecinatate a punctului \( (a_{1}^{0},\ldots,a_{n}^{0}) \) in \( \mathbb{R}^n \) in care ecuatia de mai sus are \( n \) solutii \( x_{1}(a_{1},\ldots,a_{n}),\ldots,x_{n}(a_{1},\ldots,a_{n}) \) de clasa \( C^{\infty} \) in parametrii \( a_{1},\ldots,a_{n} \).
Admitere SNSB, 2002