Calcul de limita de integrala

Moderators: Mihai Berbec, Liviu Paunescu

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Calcul de limita de integrala

Post by Cezar Lupu »

Sa se calculeze

\( \lim_{n\to\infty}\int_0^n ln(1+e^{-x})dx \).
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
User avatar
Ciprian Oprisa
Pitagora
Posts: 55
Joined: Tue Feb 19, 2008 8:01 pm
Location: Lyon sau Cluj sau Baia de Cris

Post by Ciprian Oprisa »

Folosim dezvoltarea in serie \( ln(1+x)=\sum\limits_{n\geq0}(-1)^n\frac{x^{n+1}}{n+1} \).
\( \Rightarrow \int\limits_0^n ln(1+e^{-x})=
\int\limits_0^n\sum\limits_{k\geq0}(-1)^k\frac{e^{-x(k+1)}}{k+1}= \)

\( =\sum\limits_{k\geq0}\frac{(-1)^k}{k+1}\int\limits_0^n e^{-x(k+1)}= \)
\( =\sum\limits_{k\geq0}\frac{(-1)^{k+1}}{(k+1)^2}(e^{-n(k+1)}-1)= \)
\( =e^{-n}\sum\limits_{k\geq0}\frac{(-1)^{k+1}}{(k+1)^2}e^{-nk}-\sum\limits_{k\geq0}\frac{(-1)^k}{(k+1)^2}= \)
\( =e^{-n}C+\frac{\pi^2}{12}\rightarrow\frac{\pi^2}{12} \)
Un lucru este ceea ce este, nu ceea ce pare a fi.
K!!
Arhimede
Posts: 9
Joined: Mon Oct 01, 2007 10:47 pm

Re: Calcul de limita de integrala

Post by K!! »

Cezar Lupu wrote:Sa se calculeze

\( \lim_{n\to\infty}\int_0^n ln(1+e^{-x})dx \).
A double integration trick yields the answer too.
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Post by Cezar Lupu »

K!! wrote:
Cezar Lupu wrote:Sa se calculeze

\( \lim_{n\to\infty}\int_0^n ln(1+e^{-x})dx \).
A double integration trick yields the answer too.
Can you be more specific? My approach is the same as Ciprian's above. :)
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
K!!
Arhimede
Posts: 9
Joined: Mon Oct 01, 2007 10:47 pm

Post by K!! »

\( \ln \left( {1 + e^{ - x} } \right) = \int_0^{\exp ( - x)} {\frac{1}
{{1 + u}}\,du} . \)


By reversing integration order we get a single integral which can be solved using the geometric series, the rest follows by using the Basel problem.
Post Reply

Return to “Analiza reala”