Doua perechi de numere inlantuite
Posted: Mon Feb 18, 2008 11:24 pm
Fie numerele reale \( x\ ,\ y\ ,\ x_1\ ,\ y_1 \) pentru care \( 1<x<y \) si \( \left\{\begin{array}{c}
x_1=x+\frac yx-1\\\\
y_1=y+\frac xy-1\end{array} \) .
Sa se arate ca : \( \left\|\begin{array}{cc}
1. & \{\ x_1\ ,\ y_1\ \}\subset (\ x\ ,\ y\ )\\\\
2. & x_1=y_1\ \Longleftrightarrow\left\|\begin{array}{c}
x=y=2\\\\
\mathrm {\ sau\ }\\\\
2\in (\ x\ ,\ y\ )\end{array}\end{array} \) .
x_1=x+\frac yx-1\\\\
y_1=y+\frac xy-1\end{array} \) .
Sa se arate ca : \( \left\|\begin{array}{cc}
1. & \{\ x_1\ ,\ y_1\ \}\subset (\ x\ ,\ y\ )\\\\
2. & x_1=y_1\ \Longleftrightarrow\left\|\begin{array}{c}
x=y=2\\\\
\mathrm {\ sau\ }\\\\
2\in (\ x\ ,\ y\ )\end{array}\end{array} \) .