Să se demonstreze că pentru orice număr natural \( n \geq 2 \) are loc inegalitatea \( \frac{1}{2 sqrt {2!}}+\frac{1}{3 \sqrt[3] {3!}}+...+\frac{1}{n \sqrt[n] {n!}}> \frac {n-1}{n+1}. \)
Ion Guşatu, OLM 2008 Olt
Inegalitate cu radicali
Moderators: Filip Chindea, Andrei Velicu, Radu Titiu
-
Marius Perianu
- Euclid
- Posts: 40
- Joined: Thu Dec 06, 2007 11:40 pm
- Location: Slatina
- Mateescu Constantin
- Newton
- Posts: 307
- Joined: Tue Apr 21, 2009 8:17 am
- Location: Pitesti
-
Theodor Munteanu
- Pitagora
- Posts: 98
- Joined: Tue May 06, 2008 5:46 pm
- Location: Sighetu Marmatiei