Paralelism si coliniaritate intr-un paralelogram

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
mihai++
Bernoulli
Posts: 206
Joined: Wed Nov 28, 2007 8:08 pm
Location: Focsani

Paralelism si coliniaritate intr-un paralelogram

Post by mihai++ »

Fie \( ABCD \) paralelogram si \( E\in BD \) si \( C^\prime \) simetricul punctului \( C \) fata de \( E \). Construim paralelogramul \( C^\prime GAF \) cu \( F \in AB, \quad G\in AD \). Demonstrati ca:
a)\( EF||AC \);
b)\( G,E,F \) coliniare.
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Post by Virgil Nicula »

Va rog sa mentionati la Subject daca problema este o compozitie proprie iar in caz contrar
sa mentionati sursa, daca se poate. Aici ma exprim/adresez in general/tuturor si nu numai lui Mihai++.
Draguta problema ! Asteptam solutii ...
Last edited by Virgil Nicula on Fri Feb 13, 2009 4:06 pm, edited 1 time in total.
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

a) Deoarece \( E\in BD \) atunci \( \overline{AE}=\lambda\overline{AB}+(1-\lambda)\overline{AD} \)

De asemenea, E fiind mijlocul lui CC', atunci
\( \overline{AC}^{\prime}=2(\lambda\overline{AB}+(1-\lambda)\overline{AD})-\overline{AB}-\overline{AD}=(2\lambda-1)(\overline{AB}-\overline{AD})=(2\lambda-1)\overline{DB} \).

Dar cum \( \triangle AFC^{\prime}\sim \triangle DAB \) rezulta \( \overline{AD}=(1-2\lambda)\overline{AD} \) si atunci \( \overline{EF}=\overline{AF}-\overline{AE}=-\lambda(\overline{AB}+\overline{AD})=-\lambda\overline{AC} \), ceea ca trebuia demonstrat.

b) Daca O' este centrul paralelogramului AFC'G atunci \( O^{\prime}E\parallel AC \), deci F, O', E sunt coliniare si de aici F, G, E sunt coliniare.
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Re: Paralelism si coliniaritate intr-un paralelogram

Post by Virgil Nicula »

mihai++ wrote: Fie un paralelogram \( ABCD \) si un punct \( E\in BD\ . \) Construim simetricul \( S \) al lui \( C \) fata de \( E \)

si paralelogramul \( SGAF \) , unde \( F \in AB \) si \( G\in AD\ . \) Aratati ca \( EF\ ||\ AC \) si \( GE\in FG\ . \)
Dem (vectorial). Fixam originea sistemului de vectori in \( O\in AC\cap BD \) , adica \( \vec{OX}=X \) si \( \vec{XY}=Y-X\ . \) Deci

\( C=-A \) , \( D=-B \) , exista \( m\in\mathbb R \) astfel incat \( \underline {\overline{\left\|\ E=mB\ \right\|}} \) si \( S=2E-C \) , adica \( \underline{\overline{\left\|\ S=A+2mB\ \right\|}}\ . \)

\( \odot\ \left|\begin{array}{ccccc}
SF\ \parallel\ AD & \Longleftrightarrow & F=S+u(A-D) & \Longleftrightarrow & F=(1+u)A+(2m+u)B\\\\\\
F\in AB & \Longleftrightarrow & F=A+v(A-B) & \Longleftrightarrow & F=(1+v)A-vB\end{array}\ \right|\ \Longleftrightarrow\ \left|\begin{array}{c}
1+u=1+v\\\\\\
2m+u=-v\end{array}\right|\ . \)


Deci \( u=v=-m \) , adica \( \underline{\overline{\left\|\ F=(1-m)A+mB\ \right\|}}\ . \) Am folosit faptul ca \( F\in AB\ \Longleftrightarrow\ AF\ \parallel\ AB\ . \)

\( \odot\ \ S+A=F+G\ \Longleftrightarrow\ G=S+A-F=A+2mB+A-(1-m)A-mB \) , adica \( \underline{\overline{\left\|\ G=(1+m)A+mB\ \right\|}}\ . \)

Se observa ca \( \left|\begin{array}{c}
\vec{EF}=F-E=(1-m)A\\\\\\
\vec{EG}=G-E=(1+m)A\end{array}\right| \)
, adica \( EF\ \parallel\ AC \) si \( (1+m)\cdot \vec{EF}=(1-m)\cdot\vec{EG} \Longrightarrow\ E\in FG\ . \)
Post Reply

Return to “Clasa a IX-a”